摘要
Three-dimensional Dirac semimetal Cd_(3)As_(2)has been considered as an excellent candidate for applications of electronic devices owing to its ultrahigh mobility and air-stability.However,current researches are focused mainly on the use of gate-voltage to control its carrier transport tunability,while the manipulation of transport properties by element-doping is quite limited.Here we report the tunable magneto-transport properties by adjusting Mn-doping in the Cd_(3)As_(2)compound.We find that Mnelement doping has a strong influence on the Fermi level positions,and the Fermi energy approaches to Dirac point with higher Mn-doping.More importantly,the introduction of Mn atoms transforms diamagnetic Cd_(3)As_(2)to anti ferromagnetic(Cd,Mn)_(3)As_(2),which provides an approach to control topological protected Dirac materials by ma nipulating antiferro magnetic order parameters.The Shubnikov-de Hass oscillation originates from the surface states,and the Landau fan diagram yields a nontrivial Berry phase,indicating the existence of massless Dirac fermions in the(Cd_(1-x)Mn_x)_(3)AS_(2)compounds.Our present results may pave a way for further investigating anti ferromagnetic topological Dirac semimetal and expand the potential applications in optoelectronics and spintronics.
基金
the National Natural Science Foundation of China(No.51771197)
the Chinese Academy of Sciences(No.KJZD-EW-M05)
the Liaoning Revitalization Talents Program(No.XLYC1807122)。