摘要
考虑非线性矩阵方程X+A^(*)X^(-2)A=I,其中A是n阶复矩阵,I是n阶单位矩阵.通过初等微积分推导出此方程极大解的新扰动界,并给出数值例子对所得结果与已有结果进行比较说明.
In this paper,the nonlinear matrix equations X+A^(*)X^(-2)A=I is discussed,where A is an n×n complex matrix and I is an n×n identity matrix.Besides,a new perturbation bound for maximal solution of this equation is derived by elementary calculus.Meanwhile,a numerical example is given to compare the obtained results with the existing ones.
作者
马伟
高景利
MA Wei;GAO Jingli(School of Mathematics and Statistics,Nanyang Normal University,Nanyang 473061,China)
出处
《南阳师范学院学报》
CAS
2021年第4期18-21,共4页
Journal of Nanyang Normal University
基金
河南省基础与前沿技术研究计划项目(142300410385)
南阳师范学院博士专项项目(ZX2014078)。
关键词
非线性矩阵方程
HERMITE正定解
扰动界
nonlinear matrix equation
Hermitian positive definite solution
perturbation bound