摘要
多变量时间序列(Multivariate Time Series,MTS)具有多变量性和高冗余性,使用聚类分析从海量、高维的MTS数据中挖掘有趣模式具有重要意义。本文从基于实例、基于特征和基于模型的角度,对近年来MTS聚类方法的研究进行归类,为研究者了解最新的MTS聚类方法研究动态和发展趋势提供参考。
Multivariate time series is multivariable and highly redundant.Cluster analysis is of great significance in mining interesting patterns from massive and high-dimensional MTS data.In this paper,the research on MTS clustering methods in recent years is classified from the perspectives of case-based,feature-based and model-based,so as to provide reference for researchers to understand the latest research trends and development trends of MTS clustering methods.
作者
杨秋颖
翁小清
YANG Qiu-ying;WENG Xiao-qing(College of Information Technology,Hebei University of Economics and Business,Shijiazhuang Hebei 050061,China)
出处
《河北省科学院学报》
CAS
2021年第3期1-8,25,共9页
Journal of The Hebei Academy of Sciences
关键词
多变量时间序列
聚类分析
相似性度量
维数约简
Multivariate time series
Cluster analysis
Similarity measure
Dimension reduction