期刊文献+

融合评论影响力的网络舆情热点主题演化研究 被引量:11

Research on the Evolution of Hot topics of Online Public Opinion with the Influence of Comments
下载PDF
导出
摘要 [目的/意义]在舆情领域,通过对已知主题生命周期演化轨迹的分析、热点与非热点主题演化过程的对比,可以更好地把握热点主题演化规律。[方法/过程]本文提出将TF-IDF算法融合评论影响力选择主题特征词,在此基础上,通过计算主题强度与相似度提出了6种主题演化形式,并在主题演化阶段将主题强度与主题内容两方面相结合进行了可视化实验。[结果/结论]最终展示出各个时间窗里的主题内容及主题强度,分析与挖掘出舆情事件中网民观点随时间的演化形式与演化规律。 [Purpose/Significance]In the field of public opinion,the evolution law of hot topics can be better understood by analyzing the evolution trajectory of the life cycle of known topics and comparing the evolution process of hot topics and non-hot topics.[Method/Process]In this paper,TF-IDF algorithm was proposed to select topic feature words by integrating comment influence.On this basis,six kinds of topic evolution forms are proposed by calculating topic strength and similarity.In the evolution stage of the theme,a visualization experiment was carried out by combining the strength of the theme with the content of the theme.[Result/Conclusion]Finally,the theme content and theme intensity in each time window were displayed,and the evolution mode and evolution law of netizens'opinions in public opinion events over time were analyzed and excavated.
作者 丁晟春 刘笑迎 李真 Ding Shengchun;Liu Xiaoying;Li Zhen(Department of Information Management,School of Economics and Management,Nanjing University ofScience and Technology,Nanjing 210094,China)
出处 《现代情报》 CSSCI 2021年第8期87-97,共11页 Journal of Modern Information
基金 江苏省社会科学基金项目“面向突发事件应急决策的知识服务智能化研究”(项目编号:20TOQ004) 江苏省研究生科研创新计划“基于主题发现的突发公共卫生事件舆情引导策略研究”(项目编号:SJCX20_0145)。
关键词 微博评论 评论影响力 网络舆情 主题演化 社会网络 TF-IDF算法 可视化 Weibo comment influence of comment network public opinion theme evolution social network TF-IDF algorithm visualization
  • 相关文献

参考文献10

二级参考文献133

  • 1邹嘉龄,刘春腊,尹国庆,唐志鹏.中国与“一带一路”沿线国家贸易格局及其经济贡献[J].地理科学进展,2015,34(5):598-605. 被引量:403
  • 2李小霞.近年来国内洛特卡定律研究综述[J].科技情报开发与经济,2005,15(13):27-28. 被引量:86
  • 3Donghui Zheng, Fang Li. Hot Topic Detection on BBS Using Aging[C]//Proceedings of International Confer- ence on Web Information Systems and Mining (WISM' 09). Shanghai, China. November, 2009.
  • 4Nan Li, Desheng Dash Wu. Using text mining and sen- timent analysis for online forums hotspot detection[J]. Decision Support Systems, 2010, (48): 354 - 368.
  • 5Xiulan Hao, Yunfa Hu. Topic Detection and Tracking Oriented to BBS[C]//Proceedings of 2010 Internation- al Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE). Changchun, Chi- na,2010.
  • 6Qiaozhu Mei, ChengXiang Zhai. Discovering Evolu- tionary Theme Patterns from Text- An Exploration of Temporal Text Mining[C]//Proceedings of Internation- al Conference on Knowledge Discovery and Data Min- ing(KDD'05). Chicago, Illinois, USA, 2005.
  • 7Cover T M, Thomas Joy A. Elements of information the- roy[M]. New York: John Wiley and Sons, 2006: 85-86.
  • 8Blei D M, Lafferty J D. Dynamic topic model [ C ]// Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, 2006: 113-120.
  • 9Griffiths T L, Steyvers M. Finding scientific topics [ C ]//Proceeding of the National Academy of Science of United States of America. 2004,101:5228-5235.
  • 10Alsumait L, Barbara D, Domenieoni C. On-line LDA: Adaptive topic models of mining text streams with applications to topic detection and tracking [ C ]// Proceeding of the 8th IEEE International Conference on Data Mining. Washington, DC, USA: IEEE Computer Society, 2008 : 3-12.

共引文献304

同被引文献179

引证文献11

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部