期刊文献+

空冷条件下18650锂电池温度场仿真分析 被引量:2

Simulation and Analysis of 18650 Lithium Battery Temperature Field with Air Cooling
下载PDF
导出
摘要 对18650锰酸锂电池建立电化学-热耦合三维仿真模型。基于电化学理论建立单体电池模型,以充放电过程中释放的热量作为热模型中的热源;通过热模型仿真计算得到电池-空气系统的温度场,以其作为电化学计算过程中的温度参数,实现电化学模型与热模型的耦合。采用数值仿真方法,分析放电倍率为2C、3C、6C及空气流速在0.1~1.0m/s范围内电池温度的分布及特征。结果表明:放电倍率越大,电池温度越高,放电倍率为6C时电池的温度已超出正常工作温度范围;冷却空气流速在一定范围内对电池温度的降低有显著作用。 The electrochemical thermal coupling three-dimensional simulation model of 18650 lithium manganate battery is established.A cell model is built based on the electrochemical theory.The heat releasedduring the charging and discharging process is used as the heat source in the thermal model.The temperature field distribution of battery-air system is obtained through the simulation of thermal model,which is used as the temperature parameter in the process of electrochemical calculation.Thus the coupling of electrochemical model and thermal model is realized.With numerical simulation,the distribution and characteristics of temperature field under 2C,3C,6C discharge rate and inair velocity range of 0.1~1.0m/s are analyzed.The results show that the higher the discharge rate is,the higher the temperature of the battery is.The temperature of the battery has exceeded the normaltemperature scope when the discharge rate is 6C.Also the cooling air flow rate has a significant effect on the reduction of the battery temperature in a certain range.
作者 杨成 李继龙 李丹 姜星晨 毕韶丹 YANG Cheng;LI Jilong;LI Dan;JIANG Xingchen;BI Shaodan(Shenyang Ligong University,Shenyang 110159,China;Liaoyang Newmic Plastic Products Co.,Ltd.,Liaoyang 111000,China)
出处 《沈阳理工大学学报》 CAS 2021年第2期90-94,共5页 Journal of Shenyang Ligong University
关键词 锂电池 温度场 空气冷却 仿真 lithium battery temperature field air cooling simulation
  • 相关文献

参考文献7

二级参考文献42

  • 1崔萌佳,戴永年,姚耀春,杨斌,任海伦,李伟宏.电动车用动力电池的研究概况[J].昆明理工大学学报(理工版),2004,29(6):122-126. 被引量:10
  • 2付正阳,林成涛,陈全世.电动汽车电池组热管理系统的关键技术[J].公路交通科技,2005,22(3):119-123. 被引量:77
  • 3刘露,戴永年,姚耀春.导电剂对锂离子电池性能的影响[J].材料导报,2007,21(F05):267-269. 被引量:29
  • 4SHUSTER N,PAPADAKIS N, BARLOW G,et al. Computer mo- deling and optimization of high power thermal batteries for ad- vanced active sonobuoys[J]. J Electrochemical Society, 1981,128 ( 3 ) : 491-502.
  • 5SCHOEFFER S. Thermal batteries modeling, self-discharge and self- heating[J]. Journal of Power Sources, 2005,142 : 361-369.
  • 6POLLARD R, NEWMAN J. Mathematical modeling of lithium-alu- minum, iron sulfide battery[J]. J Electrochemical Society, 1981,128 ( 3 ) :491-502.
  • 7GIANCARLO C S, FREITAS A, FERNANDO C, et al.A simulation of a thermal battery using Phoenics [J].Journal of Power Sources, 2008,179 : 424-429.
  • 8SCHOEFFERT S. Thermal batteries modeling, self-discharge and self-heating[J]. Journal of Power Sources, 2004.142 : 361-369.
  • 9Miles M H. Chloride-Free Thermal Batteries Using Molten Nitrate Electrolytes: U. S, US 7 629 075 B2 [ P]. 2009 - 12 - 08.
  • 10Niu Y Q, Wu Z, Du J L. Discharge Characteristics of Li- Mg- B Alloy/MnO2 Couples in Molten LiNO3 - KNO3 - Ca ( NO3 )2 Eutectic Electrolyte [ J ]. Journal of The Electrochemical Society, 2013, 160 ( 9 ) : A1375 - A1379.

共引文献23

同被引文献18

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部