期刊文献+

基于改进的YOLO v3车辆检测方法 被引量:5

Vehicle Detection Method Based on Improved YOLO v3
下载PDF
导出
摘要 为了有效地解决传统车辆检测算法中存在的泛化能力差、识别率不高的问题,提出了一种基于改进YOLO v3的车辆检测算法。改进的车辆算法对原YOLO v3中的模型进行剪枝处理,采用Darknet-53网络结构提取特征,同时结合回归损失函数GIOU算法对检测精度进行提高。在运用K-means++聚类分析算法处理数据基础上,运用所提出的改进YOLO v3算法,基于COCO数据集进行了网络的训练、测试和验证。试验结果表明,改进后的YOLO v3算法在车辆检测上的泛化能力得到提升,并兼具速度优势。 In order to effectively solve the problems of poor generalization ability and low recognition rate in traditional vehicle detection algorithm,this paper proposes a vehicle detection algorithm based on improved YOLO v3.The improved vehicle algorithm prunes the original model in YOLO v3,extracts features by using the structure of Darknet-53 network,and improves the detection accuracy by combining the regression loss function GIOU algorithm.K-means++clustering analysis algorithm is used to process data,and the improved YOLO v3 algorithm is used to train,test and verify the network based on COCO data set.The experimental results show that the generalization ability of the improved YOLO v3 algorithm in vehicle detection is improved,and has speed advantage.
作者 顾晋 罗素云 Gu Jin;Luo Suyun(College of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《农业装备与车辆工程》 2021年第7期98-103,共6页 Agricultural Equipment & Vehicle Engineering
关键词 车辆检测 深度学习 YOLO v3算法 GIOU算法 Darknet框架 vehicle detection deep learning YOLO v3 algorithm GIOU algorithm Darknet-53
  • 相关文献

参考文献15

二级参考文献59

共引文献392

同被引文献31

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部