期刊文献+

QT800-2球墨铸铁表面激光熔覆工艺参数多目标优化 被引量:7

Multi-objective Optimization of Laser Cladding Process Parameters on QT800-2 Ductile Iron Surface
下载PDF
导出
摘要 目的为了解决球墨铸铁表面激光熔覆铁基合金过程中熔覆层塌陷、厚度不均等问题,确定旁轴送粉激光熔覆最优工艺参数组,并对参数寻优方法进行对比分析。方法选取工艺参数(激光功率、扫描速度、送粉速度)为优化变量和熔覆层表面质量(表面粗糙度、硬度)为优化指标,通过设计L_(9)(3^(4))正交试验进行极差分析,得到优化后的参数组合;通过神经网络预测模型结合NSGA-II多目标优化算法进行参数寻优。通过对比这两种优化方法对熔覆层表面质量的实际优化效果,确定最优工艺参数组。结果 3个工艺参数对综合质量的影响大小依次为激光功率>扫描速度>送粉速度,正交优化参数组合使得熔覆层表面粗糙度降低23.3%,硬度降低7.1%。而NSGA-II遗传算法优化参数组合可实现表面粗糙度降低40.5%,硬度提升6.6%。最优工艺参数组合为:激光功率4614 W,送粉速度2.6 r/min,扫描速度325.6 mm/min。结论采用NSGA-II遗传算法能获得比正交试验更快更好的优化效果;通过合理选择工艺参数,能够解决熔覆层塌陷、厚度不均等问题,从而极大地改善熔覆层表面质量。 To solve the problems of cladding layer collapse and uneven thickness in the process of laser cladding Fe-based alloy on the surface of ductile cast iron,the optimal process parameter group of side-axis powder feeding laser cladding was determined,and the parameter optimization methods were compared and analyzed.Select the process parameters(laser power,scanning speed,powder feeding speed)as the optimization variables and the surface quality of the cladding layer(surface roughness,hardness)as the optimization indicators,and perform the range analysis by designing the L_(9)(3^(4))orthogonal test to get the optimized parameter combination;perform parameter optimization through the neural network prediction model combined with NSGA-II multi-objective optimization algorithm.By comparing the actual optimization effects of these two optimization methods on the surface quality of the cladding layer,the optimal process parameter group is determined.The influence of the three process parameters on the overall quality is in order:laser power,scanning speed,powder feeding speed,and the combination of orthogonal optimization parameters reduces the surface roughness of the cladding layer by 23.3%and the hardness by 7.1%;while the optimized parameter combination by the NSGA-II genetic algorithm can reduce the surface roughness by 40.5%and increase the hardness by 6.6%.The optimal combination of process parameters is:laser power 4614 W,powder feeding speed 2.6 r/min,scanning speed 325.6 mm/min.The use of NSGA-II genetic algorithm can obtain better optimization results than orthogonal experiments;through reasonable selection of process parameters,it can solve the problems of cladding layer collapse and thickness unevenness,thereby greatly improving the surface quality of the cladding layer.
作者 张胜江 王明娣 倪超 徐悠源 尹梓航 林瑶 郭敏超 王贤宝 ZHANG Sheng-jiang;WANG Ming-di;NI Chao;XU You-yuan;YIN Zi-hang;LIN Yao;GUO Min-chao;WANG Xian-bao(School of Mechanical and Electrical Engineering,Soochow University,Suzhou 215000,China)
出处 《表面技术》 EI CAS CSCD 北大核心 2021年第7期74-82,共9页 Surface Technology
基金 国家自然科学基金(51675360) 苏州市科技计划项目(SYG201805) 苏州大学大学生创新创业训练计划(202010285153K) 苏州大学第二十二批大学生课外学术科研基金(KY20200010Z)。
关键词 激光熔覆 熔覆质量 球墨铸铁 工艺参数 正交试验 NSGA-II算法 工艺优化 laser cladding cladding quality ductile cast iron process parameters orthogonal experiment NSGA-II algorithm process optimization
  • 相关文献

参考文献16

二级参考文献108

共引文献444

同被引文献105

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部