期刊文献+

结合OFDR与Ko位移理论的变形估算研究 被引量:5

Study of deformation estimation combining OFDR and Ko displacement theory
下载PDF
导出
摘要 Ko位移理论能够很精准地对结构进行变形重构,为了将这一理论应用到实际工程中,选用光频域反射(OFDR)分布式光纤传感器作为测量工具,设计了基于等强度梁的变形估算实验方案。实验在等强度梁上分六级加载,用百分表测得4个测点在每级荷载下的真实挠度值,并根据每级所测应变值进行挠度的变形重构,最后将2种方法所得到的挠度值进行对比。实验结果表明:光纤的应变系数为0.71666,变形重构挠度值与真实挠度值之间的最大误差为0.586 mm,符合实验预期。 The Ko displacement theory can reconstruct the structure accurately.In order to apply this theory to the practical engineering,the optical frequency-domain reflection(OFDR)distributed fiber sensor is used as the measuring tool,and an experimental scheme of deformation estimation based on equal strength beam is designed.The experiment is divided into six stages of loading on the beam of equal strength,and the true deflection values of four measuring points under each stage load are measured by dial gauge.The deformation reconstruction of deflection is carried out according to the strain value measured at each stage.Finally,the deflection values obtained by the two methods are compared.The experimental results show that the strain coefficient of the fiber is 0.71666,the maximum error between the deflection value of deformation reconstruction and the true deflection is 0.586 mm,which is in line with the experimental expectation.
作者 夏力 王大鹏 XIA Li;WANG Dapeng(College of Civil Engineering,Suzhou University of Science and Technology,Suzhou Jiangsu 215011,China)
出处 《光通信技术》 2021年第7期53-55,共3页 Optical Communication Technology
基金 国家自然科学基金(批准号:51308369)资助。
关键词 光频域反射 分布式光纤传感器 标定 应变系数 变形重构 Ko位移理论 optical frequency domain reflection distributed optical fiber sensors calibration strain coefficient deformation reconstruction Ko displacement theory
  • 相关文献

参考文献1

二级参考文献14

  • 1孙琪真,刘德明,王健.全分布式光纤应力传感器的研究新进展[J].半导体光电,2007,28(1):10-15. 被引量:15
  • 2A. J. Rogers. A technique for the measurement of field distribution[J]. Appl. Opt., 1981, 20(6): 1060-1074.
  • 3T. Horiguchi, K. Shimizu, T. Kurashima. Advances in distributed sensing techniques using BrUlouin scattering [C]. SPIE, 1995, 2507:126-135.
  • 4Chtcherbakov A. A., Swart P. L., Spammer S. J.. A fibre optic disturbance location sensor using modified Sagnac and Mach-Zehnder interferometers[C]. Proc. of OFS -12, 1997, 16:516-519.
  • 5Spammer S. J., Swart P. L., Chtcherbakov A. A.. Merged Sagnac-Michelson interferometer for distributed disturbance detection[J]. J. Lightwave Technol., 1997, 15:972-976.
  • 6Russell S. J., Brady K. R. C., Darkin J. P.. Real-time location of multiple time-varing strain disturbances, acting over a 40 km Fiber section, using a novel dual-Sagnac interferometer[J]. J. Lightwave Technol., 2001, 19(2): 205-213.
  • 7Kersey A. D., Davis M. &, Patrick H. J. et al.. Fiber grating sensors[J]. J. Lightwave Technol., 1997, 15(8): 1442-1463.
  • 8Berkoff T. A., Kersey A. D.. Fiber Bragg grating array sensor system using a band-pass wavelength division multiplexer and interferometric detection[J]. IEEE Photon. Technol. Lett., 1996, 8(11): 1522-1524.
  • 9Davis M. A., Kersey A. D.. Matched filter interrogation technique for fiber Bragg grating arrays [J]. Electron. Lett., 1995, 31(10): 822-823.
  • 10Chi Chiu Chan, Wei Jin, Ho H. L. et al.. Performance analysis of a time-division-multiplexed fiber Bragg grating sensor by use of a tunable laser source[J]. IEEE J. Sel. Topics Quantum Electron., 2000, 6(5): 741-749.

共引文献64

同被引文献57

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部