期刊文献+

暗弱目标偏振度图像与偏振角图像去噪方法研究 被引量:10

Research on Denoising Method for Polarization Degree Image and Polarization Angle Image of Dim and Weak Targets
下载PDF
导出
摘要 针对暗弱目标偏振融合图像存在背景噪声强、细节轮廓特征不明显等问题,利用偏振度图像中高斯背景噪声灰度与待测目标灰度的差异性,提出了基于噪声模板阈值匹配的偏振度图像去噪算法。分析了偏振角图像中纯噪声区域子图像与目标轮廓区域子图像的灰度相关性,提出了基于区域灰度相关性匹配的偏振角图像去噪算法,与传统去噪方法相比,该算法可有效去除大量背景噪声,更好地保留目标轮廓特征。偏振图像融合对比实验结果进一步证明,提出的偏振图像去噪方法可显著提高暗弱目标在图像中的对比度,改善偏振融合增强图像的质量。 Aiming at the problems of strong background noise and indistinct detail contour features in polarization fusion image of dim and weak targets,considering to the difference of gray level between Gaussian background noise and target contour in degree of polarization image,a denoising algorithm based on noise template threshold matching is proposed.Analyzing the gray correlation between the sub-image of pure noise and the sub-image of target contour in the angle of polarization image,a denoising algorithm based on Region Gray Correlation Matching(RGCM)is proposed,compared with the traditional denoising methods,the RGCM algorithm can effectively remove a large amount of background noise and retain the target contour features better.The experimental results of polarization image fusion further prove that the algorithm proposed in this paper can not only improve the contrast of dim and weak targets but also significantly improve the image quality in polarization fusion enhancement image.
作者 苗澍茁 范存波 温冠宇 高健 赵国海 MIAO Shuzhuo;FAN Cunbo;WEN Guanyu;GAO Jian;ZHAO Guohai(Changchun Observatory/NAO,Chinese Academy of Sciences,Changchun 130117,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2021年第7期100-112,共13页 Acta Photonica Sinica
基金 国家自然基金天文联合基金重点项目(No.U1731240) 国家自然基金青年基金(No.11703054) 吉林省与中国科学院科技合作高新技术产业化专项资金(No.2020SYHZ0049)。
关键词 偏振成像 图像去噪 图像融合 偏振度图像 偏振角图像 Polarization imaging Image denoising Image fusion Image of degree of polarization Image of angle of polarization
  • 相关文献

参考文献3

二级参考文献33

  • 1田艳琴,郭平,卢汉清.基于灰度共生矩阵的多波段遥感图像纹理特征的提取[J].计算机科学,2004,31(12):162-163. 被引量:30
  • 2SCHETTINI R, CORCHS S. Underwater image processing: state of the art of restoration and image enhancement methods [J]. EURASIP Journal on Advances in Signal Processing. 2010:746052.
  • 3THOMAS W C , JUSTIN M. Patterns and properties of polarized light in air and water[J]. Philosophical Transactions of The Ryal Society B, 2011, 366(1565) : 619 - 626.
  • 4ZHAO Y, ZHANG L, ZHANG D, etal. Object separation by polarimetric and spectral imagery fusion[J]. Computer vision and Image Understanding, 2009, 113(8) :855 - 866.
  • 5DANIEL A L, MELANIE B. A new fusion algorithm for shadow penetration using visible and midwave infrared polarimetric images[C]. 13th International Conference on Information Fusion, 2010.
  • 6YANG F, WEI H. Fusion of infrared polarization and intensity images using support value transform and fuzzy combination rules[J]. Infrared Physics & Technology, 2013, 60:235-243.
  • 7LEE D D, SEUNG H S. Learning the parts of objects by non- negative matrix factorization[J]. Nature, 1999, 401 ( 21 ) : 788-791.
  • 8LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]. Proceedings of Advances in Neural and Information Processing Systems, Denver, 2000: 556-562.
  • 9HUANG N E, ZHENG S. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings of the Royal Society London, 1998:903 1005.
  • 10NUNES J C, NIANG O, BOUAOUNE Y, et al. Bidimensional empirical mode decomposition modified for texture analysis [C]. Scandinavian Conference on Image Analysis, 2003 : 171-177.

共引文献43

同被引文献139

引证文献10

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部