期刊文献+

基于约束非负矩阵分解的高光谱解混 被引量:2

Hyperspectral Unmixing Based on Constrained Nonnegative Matrix Factorization
下载PDF
导出
摘要 为了得到改进的优化解,提出一种基于丰度和端元约束下非负矩阵分解的解混方法。首先,基于丰度矩阵稀疏性特点,将重加权稀疏正则化引入到非负矩阵分解模型中,其中权重根据丰度矩阵自适应更新。其次,根据同一地物在相邻像素中分布的相似性先验,进一步将全变差正则化引入到非负矩阵分解模型中,以改进其丰度平滑性。最后,通过一个马尔可夫随机场模型中的势函数,实现端元光谱平滑性的约束。为了验证所提算法的性能,在一个模拟数据集和两个真实数据集(Jasper Ridge和Cuprite)进行了测试。结果表明:所提方法在端元光谱相似性和丰度估计精度等方面都有所改进。 To obtain an improved optimal solution,a nonnegative matrix factorization method based on abundance and endmember constraints for hyperspectral unmixing is proposed.First,considering the sparseness of the abundance matrix,a weighted sparse regularization is introduced to the Nonnegative Matrix Factorization(NMF)model to ensure the sparseness of the abundance matrix.The weights are updated adaptively according to the abundance matrix.Second,given the priori knowledge of the distribution of adjacent pixels,a total variation regularization is further added to the NMF model to promote the smoothness of the abundance map.Finally,a new constraint given by a potential function from the Markov random field model is introduced to improve the spectral smoothness of the endmembers.Experiments are conducted to evaluate the effectiveness of the proposed method based on three different data sets,including a synthetic data set and two real-life data sets(Jasper Ridge and Cuprite)respectively.From the experimental results,it is found that the proposed method got better performances both on the spectral similarity and the estimation accuracy for abundance.
作者 贾响响 郭宝峰 丁繁昌 徐文结 JIA Xiangxiang;GUO Baofeng;DING Fanchang;XU Wenjie(School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2021年第7期113-128,共16页 Acta Photonica Sinica
基金 国家自然科学基金(No.61375011)。
关键词 遥感 高光谱解混 非负矩阵分解 高光谱图像 稀疏矩阵 平滑性 马尔科夫随机场 Remote sensing Hyperspectral unmixing Nonnegative matrix factorization Hyperspectral imaging Sparse matrices Smoothing Markov random fields
  • 相关文献

参考文献2

二级参考文献45

  • 1余杨,张旭苹.灰度人脸识别形态学相关的一般理论研究(英文)[J].光子学报,2006,35(2):299-303. 被引量:11
  • 2惠建江,刘朝晖,刘文.数学形态学在红外多弱小目标提取中的应用[J].光子学报,2006,35(4):626-629. 被引量:26
  • 3Berman M, Kiiveri H, Lagerstrom R, Ernst A, Dunne R and Hunt-ington J F. 2003. ICE: an automated statistical approach to identifying endmembers in hyperspectral images. IEEE Inter- national Geoscience and Remote Sensing Symposium, France: Toulouse, l: 279-283.
  • 4Berman M, Kiiveri H, Lagerstrom R, Ernst A, Dunne R and Hunt-ington J F. 2004. ICE: a statistical approach to identifying endmembers in hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 42(10): 2085-2095.
  • 5Berman M, Phatak A, Lagerstrom R and Wood B R. 2009. ICE: anew method for the multivariate curve resolution of hyper- spectral images. Journal of Chemometrics, 23(2): 101-116.
  • 6Boardman J W. 1998. Post-ATREM polishing of AVIRIS apparentreflectance data using EFFORT: a lesson in accuracy versus pre- cision. Summaries of the Seventh JPL Airborne Earth Science Workshop. Pasadena: JPL Publication.
  • 7Boardman J W, Kruse F A and Green R O. 1995. Mapping targetsignatures via partial unmixing of AVIRIS data: in Summaries. Fifth JPL Airborne Earth Science Workshop. Pasadena: JPL Publication: 23-26.
  • 8Bowles J H, Palmadesso P J, Antoniades J A, Baumbeck M M andRickard L J. 1995. Use of filter vectors in hyperspectral data analysis. Infrared Spaceborne Remote Sensing III, SPIE Pro- ceedin~s. San Die~o, USA, 2553:148-157.
  • 9Chang C I. 2003. Hyperspectral Imaging: Techniques for SpectralDetection and Classification. New York: Kluwer Academic/Ple- num Publishers: 40-41.
  • 10Chang C I, Du Q, Chiang S S, Heinz D C and Ginsberg I W. 2001.Unsupervised target subpixel detection in hyperspectral im- agery. Conference Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, SPIE Proceedings. Orlando FL, USA, 4381:370-379.

共引文献38

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部