期刊文献+

The molecular conformation of silk fibroin regulates osteogenic cell behavior by modulating the stability of the adsorbed protein-material interface 被引量:3

下载PDF
导出
摘要 Silk fibroin(SF)can be used to construct various stiff material interfaces to support bone formation.An essential preparatory step is to partially transform SF molecules from random coils toβ-sheets to render the material water insoluble.However,the influence of the SF conformation on osteogenic cell behavior at the material interface remains unknown.Herein,three stiff SF substrates were prepared by varying theβ-sheet content(high,medium,and low).The substrates had a comparable chemical composition,surface topography,and wettability.When adsorbed fibronectin was used as a model cellular adhesive protein,the stability of the adsorbed protein-material interface,in terms of the surface stability of the SF substrates and the accompanying fibronectin detachment resistance,increased with the increasingβ-sheet content of the SF substrates.Furthermore,(i)larger areas of cytoskeleton-associated focal adhesions,(ii)higher orders of cytoskeletal organization and(iii)more elongated cell spreading were observed for bone marrow-derived mesenchymal stromal cells(BMSCs)cultured on SF substrates with high vs.lowβ-sheet contents,along with enhanced nuclear translocation and activation of YAP/TAZ and RUNX2.Consequently,osteogenic differentiation of BMSCs was stimulated on highβ-sheet substrates.These results indicated that theβ-sheet content influences osteogenic differentiation of BMSCs on SF materials in vitro by modulating the stability of the adsorbed protein-material interface,which proceeds via protein-focal adhesion-cytoskeleton links and subsequent intracellular mechanotransduction.Our findings emphasize the role of the stability of the adsorbed protein-material interface in cellular mechanotransduction and the perception of stiff SF substrates with differentβ-sheet contents,which should not be overlooked when engineering stiff biomaterials.
出处 《Bone Research》 SCIE CAS CSCD 2021年第2期188-199,共12页 骨研究(英文版)
基金 supported by the National Key R&D Program of China(2017YFC1104301,to L.C.) the National Natural Science Foundation of China for Distinguished Young Scholars(31725011,to L.C.) the China Scholarship Council(201606160095,to X.C.)。
  • 相关文献

参考文献2

共引文献43

同被引文献11

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部