期刊文献+

车联网环境下电动汽车群有序充电优化策略

Optimization Strategy for Orderly Charging of Electric Vehicles in the Environment of Internet of Vehicles
下载PDF
导出
摘要 针对当前无序充电所引起的电能供需失衡、路线过载、电网安全受到威胁等问题,提出一种车联网环境下综合多方面因素的电动汽车群有序充电控制策略。该策略综合考虑电网、充电站、用户三者诉求构建多目标优化函数:电网侧以电网多时段负荷、总损耗和电压的变化值最小为目标,充电站侧以配电变压器容量值最大为目标,用户侧以用户充电成本最小为目标;结合用户出行需求、电网功率、电网负荷波动值、电动汽车目标电量以及配电变压器的容量等约束条件,采用CPLEX优化工具包计算有序充电优化方案。仿真结果表明,电动汽车有序充电优化策略对电网侧峰谷调控、电压稳定、节省用户充电成本等方面有显著效果。 For the problems caused by current disorderly charging, such as the imbalance between power supply and demand, line overload, threat to power grid security, this paper proposes an orderly charging control strategy incorporating multiple factors for electric vehicle groups under the environment of Internet of Vehicles. Firstly, the strategy comprehensively considers the power grid, charging stations and users to establish a multi-objective optimization function, where the grid side aims to minimize the changes of load, total loss and voltage in multiple periods, the charging station side aims to maximize the capacity of distribution transformer, and the user side aims to minimize the charging cost. Secondly, combined with the constraints of user travel demand, grid power, grid load fluctuation, target power of electric vehicles and distribution transformer capacity, CPLEX optimization toolkit is used to yield the orderly charging optimization scheme. Simulation results show that the orderly charging optimization strategy of electric vehicles has a significant effect on the peak valley regulation and voltage stability in the grid side and saving charging cost in the user side.
作者 何伟 孙广波 HE Wei;SUN Guangbo(GCI Science&Technology Co.,Ltd.,Guangzhou 510310,China;Guangzhou GCI Plan&Design Institute of Communication Engineering Co.,Ltd.,Guangzhou 510310,China)
出处 《移动通信》 2021年第4期149-152,共4页 Mobile Communications
关键词 车联网 电动汽车 有序充电 粒子群 多目标优化 Internet of Vehicles electric vehicle orderly charging particle swarm optimization multi-objective optimization
  • 相关文献

参考文献14

二级参考文献168

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2刘立平,牛熠.遗传算法综述[J].东莞理工学院学报,2005,12(3):48-52. 被引量:25
  • 3肖建华,王锐凤,温春楠,田武慧,宫俊.典型日负荷曲线预测的一种简单方法[J].吉林电力,2006,34(2):14-17. 被引量:6
  • 4周双喜,王海超,陈寿孙.风力发电运行价值分析[J].电网技术,2006,30(14):98-102. 被引量:59
  • 5郭联哲,李莉,谭忠富,曹福成.基于模糊需求和用户分类响应程度的分时电价设计模型[J].华东电力,2007,35(5):11-15. 被引量:5
  • 6HADLEY S W, TSVETKOVA A. Potential impacts of plug-in hybrid electric vehicles on regional power generation [R]. Knoxville, TN, USA: ORNL, 2008.
  • 7MEYERS M K, SCHNEIDER K, PRATT R. Impacts assessment of plug-in hybrid vehicles on electric utilities and regional US power grids: Part 1 technical analysis [ R]. Richland, WA, USA: Pacific Northwest National Laboratory, 2007.
  • 8KEMPTON W, UDO V, HUBER K, et al. A test of vehicle- to-grid (V2G) for energy storage and frequency regulation in the PJM system[R]. Newark, NJ, USA: University of Delaware, 2008.
  • 9TOMIC J, KEMPTON W. Using fleets of electric-drive vehicles for grid support [J]. Journal of Power Sources, 2007, 168(2): 459-468.
  • 10KEMPTON W, TOMIC J. Vehicle-to-grid power fundamentals: calculating capacity and net revenue [J]. Journal of Power Sources, 2005, 144(1): 268-279.

共引文献384

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部