期刊文献+

含末端质量的悬臂梁随机非线性振动的随机平均法 被引量:1

Stochastic averaging method for stochastic nonlinear vibration of cantilever beam with end mass XIE Nana,GE Gen
下载PDF
导出
摘要 提出了一种可适用于含末端质量的悬臂梁强非线性振动的随机平均法。该方法将原本只能解决仅含有刚度非线性项振子的随机平均法扩展到了能解决既含有刚度非线性又含有惯性非线性的振子。先对含有末端质量的悬臂梁应用凯恩方法进行了建模,然后再基于哈密尔顿函数将振子化为关于瞬态等效振幅和瞬态相位的两个随机微分方程,随后应用随机平均原理将随机微分方程化简为一个关于等效振幅的伊藤方程。并在此基础上得出了在末端质量取不同值时的等效振幅的稳态概率密度以及位移和速度的联合概率密度。数值模拟很好地证明了该理论方法的正确性。 Here,a stochastic averaging method was proposed for strongly nonlinear vibration of a cantilever beam with end mass.This method extended the random average method being only able to solve an oscillator with stiffness nonlinearity into the one able to solve oscillators with both stiffness nonlinearity and inertia nonlinearity.A cantilever beam with end mass was modeled using Kane method,and then the oscillator was converted into two stochastic differential equations with respect to transient equivalent amplitude and transient phase based on Hamilton function,and the stochastic differential equations were simplified into an ITO equation with respect to equivalent amplitude by using the stochastic average principle.Furthermore,the steady-state probability density of equivalent amplitude and the joint probability density of displacement and velocity were solved when the end mass having different values.The theoretical correctness of the proposed method was verified with numerical simulation.
作者 解娜娜 葛根 XIE Nana;GE Gen(School of Mechanical Engineering,Tiangong University,Tianjin 300387,China)
出处 《振动与冲击》 EI CSCD 北大核心 2021年第13期16-22,共7页 Journal of Vibration and Shock
基金 国家自然基金青年基金(11402186)。
关键词 悬臂梁 强非线性 随机平均法 稳态概率密度 cantilever beam strongly nonlinearity stochastic averaging method steady-state probability density
  • 相关文献

参考文献3

二级参考文献15

  • 1刘天雄,林益明,王明宇,柴洪友,华宏星.航天器振动控制技术进展[J].宇航学报,2008,29(1):1-12. 被引量:31
  • 2陆毓琪 王晓锋 张延教等.具有任意多个弹性与刚性支承及集中质量的梁振动问题.弹道学报,1997,9(4):23-28.
  • 3Wang D,Jiang J S, Zhang W H. Frequency optimization with respect to lumped mass position [ J]. AIAA, 2003, 41 (9) : 1780 - 1787.
  • 4Swaminadham M, Michael A. A note on frequencies of a beam with a heavy tip mass [ J ]. Journal of sound and vibration,1979,66(1) : 144 - 147.
  • 5Wang B P. Eigenvalue sensitivity with respect to position of internal stiffness and mass attachments [ J ]. AIAA, 1993,31 (4) :791 -794.
  • 6Oguamanam D C D, Liu Z S, Hansen J S. Natural frequency sensitivity analysis with respect to lumped mass location [ J]. AIAA, 1999,37 (8) :928 - 932.
  • 7Wang C Y. Minimum stiffness of an internal elastic support to maximize the fundamental frequency of a vibrating beam [ J]. Journal of Sound and Vibration,2003,259 (2) : 229 - 232.
  • 8Friswell M I. Efficient placement of rigid supports using finite element models [ J ]. Communications in Numerical Methods in Engineering,2006,22 ( 3 ) : 205 - 213.
  • 9Wang D. Comments on Efficient placement of rigid supports using finite element models[J].Communication in Numerical Methods in Engineering, 2007,23 (4) : 327 - 331.
  • 10沈少萍,李智斌.末端带集中质量的可伸展挠性附件与航天器姿态耦合动力学分析[J].振动与冲击,2008,27(5):115-118. 被引量:6

共引文献15

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部