期刊文献+

基于PSO优化LSTM的滚动轴承剩余寿命预测 被引量:7

Predicting the Remaining Service Life of Rolling Bearings Based on PSO-LSTM Network Model
下载PDF
导出
摘要 为了提高滚动轴承退化特征关于时间序列的预测精度,使预测模型更加适用于滚动轴承的运行退化数据,采用粒子群算法对长短期记忆网络的参数进行优化,构建PSO-LSTM滚动轴承寿命预测模型,根据模型拟合出轴承的剩余寿命曲线。经过实验发现,PSO-LSTM网络模型可以较好地拟合复杂工况下轴承的寿命退化趋势,且与其他模型相比拟合效果更好,预测结果更为准确。 For the sake of improving the degree of accuracy about time prediction of rolling bearing degradation characteristics,and make the prediction model more suitable for rolling bearing operational degradation data,the particle swarm optimization(PSO)was used to optimize parameters of LSTM so as to build PSO-LSTM rolling bearing’s service life prediction model and then to have it based to fit the residual life curve of the rolling bearings.Experimental results showed that,the PSO-LSTM network model can better fit life degradation trend of bearings under complex operating mode,and it outperforms other models in both matching result and the prediction accuracy.
作者 李卓漫 王海瑞 LI Zhuo-man;WANG Hai-rui(Faculty of Information Engineering and Automation,Kunming University of Science and Technology)
出处 《化工自动化及仪表》 CAS 2021年第4期353-357,共5页 Control and Instruments in Chemical Industry
基金 国家自然科学基金项目(61263023,61863016)。
关键词 剩余寿命预测 滚动轴承 粒子群算法 长短期记忆网络 remaining service life prediction rolling bearing PSO LSTM
  • 相关文献

参考文献5

二级参考文献45

共引文献57

同被引文献84

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部