期刊文献+

空间飞行器交会策略建模与仿真

Modeling and Simulation of Spacecraft Rendezvous Strategy
下载PDF
导出
摘要 空间飞行器由于其所处环境的特殊性,在不同跟随模式下,如何与不同距离目标实现交会,很难在真实环境进行全面的试验和评估;通过对影响空间飞行器交会的各种系统误差和随机误差进行分析,利用变轨算法以及优化算法构建飞行器从初始位置到交会位置的轨道模型,进而得到空间飞行器交会准确度计算模型,利用该模型进行空间飞行器交会仿真,得到一系列仿真数据,对空间飞行器的研究具有参考意义。 Due to the specificity of the environment in which the spacecraft is located,it is difficult to conduct a comprehensive test and evaluation in the real environment on how to achieve rendezvous with the target at different distances under different following modes.By analyzing various systematic and random errors that affect spacecraft rendezvous,the orbital model from the initial position to the rendezvous position is constructed by using orbit change algorithm and optimization algorithm,and then the spacecraft rendezvous accuracy calculation model is obtained,and the spacecraft rendezvous simulation is carried out by using this model to obtain a series of simulation data,which is of reference significance for the study of spacecraft.
作者 李文鑫 李旷代 王伟 LI Wenxin;LI Kuangdai;WANG Wei(School of Mechanical and Electronic Control Engineering,Beijing Jiaotong University,Beijing 100044,China;Beijing Aerospace Systems Engineering Research Institute,Beijing 100076,China;Beijing Aerospace Automatic Control Research Institute,Beijing 100854,China)
出处 《计算机测量与控制》 2021年第7期208-212,共5页 Computer Measurement &Control
关键词 空间飞行器 变轨算法 优化算法 仿真模型 spacecraft orbit change algorithm optimization algorithm simulation model
  • 相关文献

参考文献6

二级参考文献27

  • 1韩潮,谢华伟.空间交会中多圈Lambert变轨算法研究[J].中国空间科学技术,2004,24(5):9-14. 被引量:32
  • 2陈刚,万自明,徐敏,陈士橹.遗传算法在航天器轨迹优化中的应用[J].弹道学报,2006,18(1):1-5. 被引量:22
  • 3朱仁璋,蒙薇,胡锡婷.航天器交会中的Lambert问题[J].中国空间科学技术,2006,26(6):49-55. 被引量:20
  • 4陈统,徐世杰.基于遗传算法的最优Lambert双脉冲转移[J].北京航空航天大学学报,2007,33(3):273-277. 被引量:28
  • 5John E P. A Class of Optimal Two-impulse Rendezvous Using Multiple-revolutiou Lambert Solutions[J]. The Journalof the Astronautical Sciences, 2000, 48(2) : 131 - 148.
  • 6Shen H, Tsiotras P. Optimal Two-impulse Rendzvous Using MUltiple-revolution Lambert Solutions[J].Journal of Guidance Control and Dynamics, 2003,26(1) :50- 61.
  • 7Vallado D A. Fundamentals of Astrodynamics and Application (Second Edition)[M]. Microcosm Press, 2001.
  • 8Thore J D, Bain R D. Series Reversion/Inversion of Lambert's Time Function[J]. The Journal of the Astronsutical Sciences, 1995,43(3):277- 287.
  • 9RICHARD H B,ROBIN M V. An elegant Lambert algorithm [J]. Journal of Guidance, Control and Dynamics, 1984,7 (6) : 662-670.
  • 10GIULIO A. A simple Lambert algorithm [J]. Journal of Guidance, Control and Dynamics,2008,31(6):1587-1594.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部