期刊文献+

一种用于运动目标跟踪与测量的目标边缘差分算法研究

Research on a Target Edge Difference Algorithm for Moving Target Tracking and Measurement
下载PDF
导出
摘要 为提高对运动目标的有效追踪,同时有效避免传统差分算法对目标有效边缘造成的“空洞”破坏,提出了一种改进型目标边缘差分算法。一方面,通过引入一种基于INMF的目标跟踪算法以完成对目标区域的动态捕捉和分割;另一方面,对目标图像的边缘处理进行Canny灰度值特征提取,通过一种改进型边缘帧差分算法完成对分割区域内目标对象的边缘运动识别。最后,将该算法同传统几种典型的跟踪识别算法进行实验验证。结果表明:在目标部分遮挡、光线变化和运动模糊环境中,该算法在检测精度和稳定性方面表现较为优异。 In order to improve the effective tracking of moving targets,while effectively avoiding the"hole"damage caused by the traditional difference algorithm to the effective edge of the target,an improved target edge difference algorithm is proposed.On the one hand,by introducing an INMF-based target tracking algorithm to complete the dynamic capture and segmentation of the target area;on the other hand,the edge processing of the target image is performed by Canny gray value feature extraction,through an improved edge frame difference The algorithm completes the edge motion recognition of the target object in the segmented area.Finally,the algorithm is verified by experiments with several typical traditional tracking and recognition algorithms.The results show that the algorithm performs better in detection accuracy and stability in the environment of partial occlusion,light changes and motion blur.
作者 金玉阳 李山 陈冰 杨宝通 陶志健 JIN Yu-yang;LI Shan;CHEN Bing;YANG Bao-tong;TAO Zhi-jian(School of Mechanical and Electrical Engineering,Northwestern Polytechnical University,Xi′an 710072,China)
出处 《组合机床与自动化加工技术》 北大核心 2021年第7期24-27,32,共5页 Modular Machine Tool & Automatic Manufacturing Technique
关键词 区域跟踪 INMF CANNY算子 边缘帧差分算法 area tracking INMF Canny operator edge frame difference algorithm
  • 相关文献

参考文献9

二级参考文献69

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 3章毓晋.图像分割[M].北京:科学出版社,2001..
  • 4孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 5Mignotte M, Collet C, Perez P,et al. Statistical model and genetic optimization:application to pattern detection in sonar images[ A ]. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing ( ICASSP'98 ) [ C ], 1998 (5) :2741 - 2744.
  • 6Maussang F, Chanussot J, Hetet A. Automated Segmentation of SAS images using the Mean-Standard deviation plane for the detection of underwater mines[ J]. OCEANS, 2003(4) :2155 -2160.
  • 7Chandran V, Elgar S, Nguyen A. Detection of mines in acoustic images using higher order spectral features [ J ]. IEEE Journal of oceanic engineering, 2002,27 ( 3 ) : 610 - 618.
  • 8Dekker R. Texture analysis and classification of ERS SAR images for Map updating of urban areas in the Nethelands [J]. IEEE transactions on geoscience and remote sensing, 2003,41 (9) : 1950 - 1958.
  • 9Christodouloi C I, Pattichis C S, Pantziaris M, et al. Texture-based classification of atherosclerotic carotid plaques [ J ]. IEEE transactions on medical imaging,2003,22 (7) : 902 - 912.
  • 10Goldman A, Cohen I. Anomaly detection based on an iterative local statistics approach[ J ]. Signal Processing,2004, (84) :1225 - 1229.

共引文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部