期刊文献+

基于GPU加速的脉冲多普勒雷达信号处理 被引量:6

GPU-accelerated pulse Doppler radar signal processing
下载PDF
导出
摘要 雷达信号处理算法的高性能实现是雷达系统中的关键技术。传统雷达信号处理算法的高性能加速主要依赖DSP和FPGA等专用设备,而它们具有开发周期长、调试难度大、成本高等缺点。GPU作为通用设备,特别适合处理雷达信号这种大规模数据。目前,GPU加速雷达信号处理的成果大多集中在SAR成像等应用领域,针对脉冲多普勒雷达相关研究还比较少。为了满足雷达回波数据对吞吐量和处理实时性的高要求,提出了基于网格跨步并行的细粒度并行化、基于多CUDA流的粗粒度并行化和基于并行扫描的数据预处理等优化技术。从性能测试和误差分析等多角度评估了算法的实时性和准确性,在所使用的硬件平台上相比于传统CPU实现达到了300倍以上的加速比,并优于其它已有的CUDA加速的脉冲多普勒雷达信号处理算法。 High-performance radar signal processing is a key technique in radar systems.Previous research on high-performance radar signal processing algorithms usually rely on specialized signal processing devices,such as FPGAs or DSPs,which are not only expensive but also difficult to program.GPU is a general-purpose device,especially suitable for processing large-scale data,such as radar signals,etc.At present,most of the existing GPU-accelerated radar signal processing research is on SAR imaging related applications,with little research on target detection radar,such as pulsed Doppler radar.In order to fulfill the requirement of radar echo data on throughput and real-time processing,a novel fine-grained parallelization by grid stride,a coarse-grained parallelization by multi-CUDA streams,and a data preprocessing method based on parallel scan are proposed.The real-time performance and accuracy of the algorithm are evaluated from multiple perspectives such as performance testing and error analysis.Compared with the state-of-the-art implementation on CPU,the hardware platform has achieved a speedup of more than 300 times,and is superior than other existing CUDA accelerated pulse Doppler radar signal processing algorithms.
作者 龚昊 刘莹 冯建周 赵仁良 冷佳旭 GONG Hao;LIU Ying;FENG Jian-zhou;ZHAO Ren-liang;LENG Jia-xu(School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100089;Data Mining and High Performance Computing Laboratory,University of Chinese Academy of Sciences,Beijing 100089;School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China)
出处 《计算机工程与科学》 CSCD 北大核心 2021年第7期1141-1149,共9页 Computer Engineering & Science
基金 国家自然科学基金(71671178)。
关键词 脉冲多普勒雷达 GPU并行计算 网格跨步并行 多流并发 并行扫描 pulsed Doppler radar GPU parallel computing grid striding parallism multi-stream parallism parallel scan
  • 相关文献

参考文献8

二级参考文献43

  • 1贾可,李世丹,郭燕,王德生.基于GPU的软件化雷达恒虚警概率算法实现[J].信息与电子工程,2012,10(5):525-527. 被引量:7
  • 2计科峰,匡纲要,黄继军.高频区复杂目标宽带雷达特征信号仿真[J].计算机仿真,2005,22(6):32-36. 被引量:8
  • 3李宁,汤俊,彭应宁,王秀坛.软件化雷达在并行信号处理系统上的实现[J].微计算机信息,2006,22(07S):1-3. 被引量:7
  • 4张旭峰,贺治华,杨德贵,黎湘.基于并行DSP的雷达测量信号处理系统设计[J].现代雷达,2006,28(9):45-47. 被引量:7
  • 5Wang Kaizhi.High Resolution SAR Imaging Techniques under Squint Mode[D].Shanghai:Shanghai Jiao Tong University,2007.
  • 6Owens John D,Luebke David,Govindaraju Naga,et al.A Survey of General-Purpose Computation on Graphics Hardware[J].Computer Graphics Forum,2007,26(1):80-113.
  • 7Govindaraju Naga,Gray Jim,Kumar Ritesh,et al.GPUTeraSort:high performance graphics co-processor sorting for Large da-tabase management[C] // International Conference on Management of Data,Chicago:[s.n.] ,2006:325-336.
  • 8Blom M,Follo P.VHF SAR Image Formation Implemented on a GPU[C] // Geoscience and Remote Sensing Symposium,Seoul Korea:[s.n.] ,2005:3352-3356.
  • 9Nickolls John,Buck Ian,Garland Michael,et al.Scalable parallel programming with CUDA[J].International Conference on Computer Graphics and Interactive Techniques,2008,6(2):40-53.
  • 10Vasily Volkov,Brian Kazian.Fitting FFT onto the G80 Architecture[EB/OL].[2008-08-14].http://www.cs.berkeley.edu/? kubitron/courses/cs258-S08/projects/reports/project6-report.pdf.

共引文献41

同被引文献74

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部