期刊文献+

深度学习在时空序列预测中的应用综述 被引量:24

Deep Learning for Spatio-Temporal Sequence Forecasting:A Survey
下载PDF
导出
摘要 对深度学习模型应用于时空序列预测的最新进展进行总结.首先介绍时空序列数据的属性及类型,并进行相应的实例化与表示.接着针对时空序列数据存在的3个问题分别提出相应的数据预处理方法,对基于传统参数模型、传统机器学习模型以及深度学习模型的时空序列预测方法逐一阐述并对比分析,为研究者选择模型提供指导,之后总结深度学习模型在不同领域内对时空序列预测的应用.最后指出当前研究的不足以及时空序列预测进一步的研究方向. In this paper,the latest progress of deep learning models in the application of spatio-temporal sequences prediction was summarized.First,the attributes and types of spatio-temporal sequence data,as well as the corresponding instantiation and representation,were introduced.Then,to deal with the three problems existed in spatio-temporal sequences,different data preprocessing methods were proposed,and the prediction methods based on traditional parameter models,traditional machine learning models and deep learning models were illustrated and compared,respectively,which provided a guidance for researchers to select proper models.Moreover,the application of deep learning models to spatio-temporal sequence prediction in different fields was depicted.Finally,the current research deficiencies and the future research directions for the spatio-temporal sequence prediction were suggested.
作者 刘博 王明烁 李永 陈洪丽 李建强 LIU Bo;WANG Mingshuo;LI Yong;CHEN Hongli;LI Jianqiang(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2021年第8期925-941,共17页 Journal of Beijing University of Technology
基金 国家重点研发计划资助项目(2018YFB1402800),国家自然科学基金资助项目(62076015)。
关键词 时空序列数据 时空序列预测 深度学习 卷积神经网络 循环神经网络 特征选择 spatio-temporal sequence data spatio-temporal sequence forecasting deep learning convolutional neural network recurrent neural network feature selection
  • 相关文献

参考文献2

二级参考文献65

  • 1Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[C]//Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms (FODO 1993). 1993:69-84.
  • 2Azzouzi M, Nabney I T. Analysing time series structure with Hidden Markov Models[C]//Proceedings of the IEEE Confe- rence on Neural Networks and Signal Processing. 1998:402-408.
  • 3Bagnall A, Janacek G J, Powell M. A likelihood ratio distance measure for the similarity between the fourier transform of time series[C]//Proceedings of the Advances in Knowledge Disco- very and Data Mining, 9th Pacific-Asia Conference (PAKDD2005). 2005:737 743.
  • 4Bagnall A, Davis I., Hills J, et al. Transformation based ensem- bles for time series elassification[C]//Proeeedings of the 2012 SIAM International Conference on Data Mining (SDM 2012). 2012:307 318.
  • 5Balakrishnan S, Madigan D. Decision trees for functional varia- bles[C] // Proceedings of the 2006 International Conference on Data Mining (ICDM 2006). 2006:798 802.
  • 6Batista G, Wang X, Keogh E. A complexity invariant distance measure for time series[C]//Proeeedings of the eleventh SIAM conference on data mining (SDM 2011 ). 2011 : 699-710.
  • 7Berndt D J,Clifford J. Using dynamic time warping to find pat terns in time series[C]//KDD Workshop. 1994 : 359 370.
  • 8Buza K. Fusion methods for time-series classification[D]. Uni- versity of Hildesheim,Germany, 2011.
  • 9Chan K, Fu A W. Efficient time series matching by wavelets [C]// Proceedings of the 15th International Conference on Data Engi- neering (1CDE 1999). 1999;126-133.
  • 10Cheng H, Yan X, Han J, et al. Discriminative frequent pattern analysis for effective classification[C]//Proeeedings of the 23rd International Conference on Data Engineering (ICDE 2007). 2007:716-725.

共引文献55

同被引文献301

引证文献24

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部