期刊文献+

动态场景图像去模糊技术研究进展 被引量:3

Research Progress of Dynamic Scene Image Deblurring
下载PDF
导出
摘要 模糊是图像退化的主要降质因素之一,图像去模糊技术一直是计算机视觉和图像处理领域的一个重要课题,广泛应用于安防、刑侦、交通、金融、医疗图像等领域.首先,对传统去模糊算法进行阐述并说明其存在的问题.然后,在此基础上对现有基于深度学习的图像去模糊方法进行综述并分析了算法存在的优势与不足,着重讨论了基于动态网络的非均匀模糊处理新趋势.最后,结合最新的研究成果,展望了图像去模糊技术未来的发展方向. Blur is one of the main factors of image degradation.Image deblurring has always been an important subject in the field of computer vision and image processing,and is widely used in security,criminal investigation,transportation,finance,medical imaging and other fields.First,the traditional deblurring algorithm and its problems were explained.Then,on the basis of this,the existing deep learning-based image deblurring methods were reviewed and the advantages and disadvantages of the algorithms were analyzed.Finally,combined with the latest research results,the future development direction of image deblurring was proposed.
作者 李晓光 杨飞璠 卓力 LI Xiaoguang;YANG Feifan;ZHUO Li(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2021年第8期982-990,共9页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61701011) 北京市自然科学基金资助项目(KZ201810005002)。
关键词 图像去模糊 动态场景 深度学习 非均匀模糊 动态网络 自适应机制 image deblurring dynamic scene deep learning non-uniform blur dynamic network adaptive mechanism
  • 相关文献

参考文献1

二级参考文献13

  • 1张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 2Starck J L,Pantin E.Deconvolution in Astronomy:A Review[J] .Publications of the Astronoical Society of the Pacific,2002,114(800 ):1051- 1069.
  • 3Kurdur D, Hatzinakos D. Blind image deconvolution[J]. IEEE Signal Processing Magazine, 1996,13(3) :43 - 64.
  • 4Kurdur D, Hatzinakos D. Blind Image Restoration via Recursive Filtering using Deterministic Constraints[A] .Proceedings of the 1996 IEEE International Conference on Acoustics[C]. Speech and Signal Processing, Atlanta. GA. USA: 1996,4:2283 - 2286.
  • 5Rudin L I,Osher S,Fatimi E.Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992,60(1-4):259-268.
  • 6Chan T F, Wong C K. Total variation blind deconvolution [J]. IEEE Transactions on Image Processing, 1998,7(3) :370 - 395.
  • 7Jianhong Shen. Weber's Law and Weberized TV Restoration[J].Physica D,2003,175(3 - 4) :241 - 251.
  • 8Karayiannis N B, Venetsanopoulos A N. Regularization theory in image restoration:the regularizing operator approach[J]. Optical Engineering,1989,28(7) :761 - 780.
  • 9Vogel C R, Oman M E.Fast,robust total variation-based reconstruction of noisy, blurred images[J]. IEEE Transactions on Image Processing,1998,7(6) :813 - 824.
  • 10Chan T F , Golub G H, Mulet P. Nonlinear primaldual method for total variation-based image restoration[J]. SIAM Journal of Scientific Computing, 1999,20(6): 1964 - 1977.

共引文献12

同被引文献31

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部