期刊文献+

双向通信无人机集群领航顶点选取方法

Leaders’selection for UAV swarm with two-way communication
下载PDF
导出
摘要 领航顶点选取是关系到领航-跟随模式无人机集群等多智能体系统可控性的重要问题。以具有几十架个体的无人机集群为研究对象,针对领航顶点选取问题,基于Laplace矩阵的特征向量,提出关键集概念。从理论上证明2关键集、3关键集以及独立关键集的图特征。在此基础上,给出求无向网络最小关键集的CSA算法,通过数值仿真实验获得了不同规模、不同通信半径条件下无人机集群最小领航集的数值特征。 Leaders’selection plays a vital role in the controllability of multiagent systems,such as the leader-follower framework of UAVs.Using the UAV swarm with dozens of individuals as the research object and aiming at the problem of leaders’selection,this paper proposes a critical set based on the eigenvector of a Laplace matrix.Theoretically,the graphical characteristics of two,three,and isolated critical sets are proved.Based on this,an algorithm named CSA for finding the minimum critical set of undirected communication networks is presented.Finally,numerical simulation is used to obtain the numerical features of the minimum leaders of UAVs of various sizes and communication radii.
作者 戴丽 DAI Li(College of Liberal Arts and Sciences,National University of Defense Technology,Changsha 410073,China)
出处 《智能系统学报》 CSCD 北大核心 2021年第3期484-492,共9页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(11872371).
关键词 领航顶点选取 领航跟随模式 无向图 LAPLACE矩阵 可控性 关键集 最小领航集 算法 leader’s selection leader-follower framework undirected network Laplacian matrix controllability critical vertex set minimum leader set algorithm
  • 相关文献

参考文献2

二级参考文献53

  • 1Reynolds C W. Flocks, herds, and schools: a distributed behavioral model. Comput Graph, 1987, 21(4): 25-34.
  • 2Gazi V, Passino K M. Stability analysis of swarms. IEEE Trans Automat Contr, 2003, 48(4): 692-697.
  • 3Xiao L, Boyd S, Lall S. A scheme for asynchronous distributed sensor fusion based on average consensus. In: Proc Int Conf Information Processing in Sensor Networks, Los Angeles, CA, 2005. 63-70.
  • 4Shi H, Wang L, Chu T G. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D, 2006, 213(1): 51-65.
  • 5Tanner H G, Jadbabaie A, Pappas G J. Stable flocking of mobile agents, part I: fixed topology. In: Proc IEEE Conf Decision and Control, Maui, Hawaii USA, 2003. 2010-2015.
  • 6Lee D, Spong M W. Stable flocking of multiple inertial agents on balanced graphs. IEEE Trans Automat Contr, 2007, 52(8): 1469-1475.
  • 7Tanner H G, Pappas G J, Kumar V. Leader-to-formation stability. IEEE Trans Robot Autom, 2004, 20(3): 433-455.
  • 8Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Trans Automat Contr, 2004, 49(9): 1465-1476.
  • 9Lafferriere G, Wolliams A, Caughman J, et al. Decentralized control of vehicle formations. Syst Contr Lett, 2005, 54(9): 899-910.
  • 10Egerstedt M, Hu X. Formation constrained multi-agent control. IEEE Trans Robot Autom, 2001, 17(6): 947-951.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部