期刊文献+

基于PNN的GIS局部放电模式识别方法 被引量:5

GIS Partial Discharge Pattern Recognition Based on PNN
下载PDF
导出
摘要 气体绝缘开关设备(GIS)因绝缘缺陷引起的局部放电特性具有复杂性和分散性,其特征量的选取易产生数据的丢失和冗余,导致故障类型的识别效果不佳。据此,提出了采用线性判别分析(LDA)方法和遗传算法优化概率神经网络结合的局部放电模式识别方法。通过GIS局部放电实验平台模拟了5类典型的GIS局部放电模型,并建立相应的超高频图谱,提取了相关的特征参量;经过线性判别分析降维得到低维的样本空间,并送入到遗传算法优化后的概率神经网络中进行模式识别;分别采用BP神经网络、SVM、概率神经网络、优化概率神经网络4种分类器进行模式识别,实验结果表明,样本空间经过LDA降维,并经过遗传算法优化概率神经网络进行模式识别,具有较优的识别效果和识别时长。 The partial discharge(PD)characteristics of gas insulated switchgear(GIS)due to insulation defects are complex and dispersive,and the selection of its characteristic quantity is easy to produce data loss and redundancy,which leads to the poor effect of fault type recognition.Therefore,a method of partial discharge pattern recognition based on linear discriminant analysis(LDA)and genetic algorithm-optimized probabilistic neural network(GA_PNN)was proposed.Five kinds of typical GIS partial discharge models were simulated through the GIS partial discharge experimental platform,and the corresponding ultra-high frequency map was established,and relevant characteristic parameters were extracted.After dimension reduction by LDA,a low-dimensional sample space was obtained,and it can be sent to the probabilistic neural network optimized by genetic algorithm for pattern recognition.Four classifiers,BPNN,SVM,PNN and GA_PNN,were used for pattern recognition respectively.The experimental results show that the sample space is dimensionally reduced by LDA,and the probability neural network optimized by genetic algorithm is used for pattern recognition,which has better recognition effect and recognition time.
作者 李君科 李明江 李德光 LI Junke;LI Mingjiang;LI Deguang(College of Computer and Information,Qiannan Normal University for Nationalities,Duyun 558000,Guizhou,China;College of Information Technology,Luoyang Normal University,Luoyang 471934,Henan,China)
出处 《电气传动》 2021年第15期45-52,共8页 Electric Drive
基金 国家自然科学基金(61802162) 贵州省科技厅自然科学基金重点资助项目([2019]1447) 贵州省教育厅自然科学基金([2019]071)。
关键词 气体绝缘开关设备 局部放电 模式识别 线性判别分析 遗传算法 概率神经网络 gas insulated switchgear(GIS) partial discharge(PD) pattern recognition linear discriminant analysis(LDA) genetic algorithm probabilistic neural network(PNN)
  • 相关文献

参考文献15

二级参考文献197

共引文献480

同被引文献68

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部