期刊文献+

Superhydrophobic Flexible Supercapacitors Formed by Integrating Hydrogel with Functional Carbon Nanomaterials 被引量:6

原文传递
导出
摘要 With the rapid development of the wearable electronics,the flexible supercapacitor with high energy density has attracted more and more attentions.From the viewpoint of outdoor and underwater application,this research tried to impart the superhydrophobicity to the flexible supercapacitors.The polyvinyl alcohol/HN0_(3) hydrogel was utilized as the electrolyte,which could achieve self-healing capability without the freezing/thawing process.Both microscale graphene and nanoscale carbon nanotubes were utilized as the electrode materials.After surface modification,the hydrophobic suspension composed of graphene and carbon nanotubes was sprayed onto the two sides of hydrogel electrolyte to construct superhydrophobic electrode.Hence,the superhydrophobicity endows the supercapacitor with outstanding self-cleaning performance.The all-in-one structure endows the supercapacitor with improved capacitive ability,outstanding flexibility,good anti-abrasion property,and reliable self-healing capability.The combination of superhydro-phobicity and flexible energy storage might have a broad application for the outdoor and underwater wearable electronics applications.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第5期1153-1158,共6页 中国化学(英文版)
基金 the National Natural Science Foundation of China(Nos.51977079,51777076,51607067) the Youth Elite Scientists Sponsorship Program by the Chinese Society for Electrical Engineering(No.CSEE-YESS-2017002) the Fundamental Research Funds for the Central Universities(Nos.2020MS115,2017MS149).
  • 相关文献

参考文献6

二级参考文献115

  • 1Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845.
  • 2Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.
  • 3Xing, W.; Qiao, S. Z.; Ding, R. G.; Li, F.; Lu, G. Q.; Yan, Z. F.; Cheng, H. M. Carbon 2006, 44, 216.
  • 4Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.
  • 5Goez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Nano Lett. 2007, 7, 3499.
  • 6Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Aead. Sci. U. S. A. 2005, 102, 10451.
  • 7Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
  • 8Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. A.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
  • 9Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Klein- hammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558.
  • 10Su, C. Y.; Xu, Y. P.; Zhang, W. J.; Zhao, J. W.; Liu, A. P.; Tang, X. H.; Tsai, C. H.; Huang, Y. Z.; Li, L. J. ACSNano 2010, 4, 5285.

共引文献14

同被引文献41

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部