期刊文献+

Engineering the morphology/porosity of oxygen-doped carbon for sulfur host as lithium-sulfur batteries 被引量:3

下载PDF
导出
摘要 Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores were designed for strong loading/adsorption with the controlling of energy-storage ability.Through rational tailoring, it is strongly verified that such engineering of evolutions result in variational of sulfur immobilization in the obtained carbon. As expected, the targeted sample delivers a stable capacity of 925 m Ah g^(-1) after 100 loops. Supporting by the "cutting-off" manners, it is disclosed that mesopores in carbon possess more fascinated traits than micro/macropores in improving the utilization of sulfur and restraining Li_(2)S_x(4≤x≤8). Moreover, the long-chain polysulfide could be further consolidated by auto-doping oxygen groups. Supported by in-depth kinetic analysis, it is confirmed that the kinetics of ion/e-transfer during charging and discharging could be accelerated by mesopores, especially in stages of the formation of solid S_(8) and Li_(2)S, further improving the capacity of ion-storage in Li-S battery. Given this, the elaborate study provide significant insights into the effect of pore structure on kinetic performance about Li-storage behaviors in Li-S battery, and give guidance for improving sulfur immobilization.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期531-545,共15页 能源化学(英文版)
基金 financially supported by National National Key Research and Development Program of China (2019YFC1907801, 2018YFC1900305, 2018YFC1901601, 2018YFC1901602) the Natural Science Foundation of China (52004334, 51622406, 51634009 and U1704252) National 111 Project (No. B14034) the National Key R&D Program of China (2018YFC1901901) the Collab-orative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources, Found of State Key Laboratory of Mineral Processing (BGRIMM-KJSKL-2017-13) the Fundamental Research Funds for the Central Universities of Central South University (2019zzts1712020zzts203) the Hunan Provincial Innovation Foundation for Postgraduate (CX20190227)。
  • 相关文献

同被引文献66

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部