期刊文献+

基于EEMD⁃PSO⁃SVM的短期风电功率预测 被引量:5

Short⁃term wind power prediction based on EMD⁃PSO⁃SVM
下载PDF
导出
摘要 针对风电功率预测精度不高的问题,建立基于EEMD⁃PSO⁃SVM的短期风电功率组合预测模型。利用集合经验模态分解法将不平稳的原始风电功率序列分解为不同复杂度的子序列,对这些子序列分别建立相应的SVM预测模型。由于支持向量机的惩罚因子和核函数参数选择对预测精度有很大影响,因此应用粒子群算法对支持向量机参数进行寻优,用优化好的参数进行建模训练,通过叠加各分量的预测结果得到最终风电功率预测值,最后对仿真结果进行分析。预测结果表明,基于EEMD⁃PSO⁃SVM的组合模型和单一模型相比可有效降低误差,在风力发电功率预测中有更好的可靠性和准确性。 In view of the low prediction accuracy of wind power prediction,a short⁃term wind power combination prediction model based on EEMD⁃PSO⁃SVM is established.With the ensemble empirical mode decomposition(EEMD)method,the unstable original wind power sequence are decomposed into subsequences with different complex rates,and the SVM(support vector machine)prediction models corresponding to these subsequences are established.As the selection of penalty factor and kernel function parameter of SVM has great influence on the prediction accuracy,the PSO(particle swarm optimization)algorithm is applied to the parameter optimization of the SVM.The optimized parameters are used for modeling training.The final wind power prediction value is obtained by superposing the prediction results of each component.The simulation results are analyzed.The prediction results show that the combined model based on EEMD⁃PSO⁃SVM can efficiently reduce the error in comparison with the single model,and has better accuracy and reliability in the wind power prediction.
作者 赵倩 陈芳芳 甘露 齐琦 王驰鑫 徐天奇 ZHAO Qian;CHEN Fangfang;GAN Lu;QI Qi;WANG Chixin;XU Tianqi(School of Electrical and Information Technology,Yunnan Minzu University,Kunming 650504,China)
出处 《现代电子技术》 2021年第15期89-93,共5页 Modern Electronics Technique
基金 国家自然科学基金项目(61761049)。
关键词 风电功率预测 模态分解 预测模型 参数寻优 组合模型 建模训练 仿真结果分析 wind power prediction mode decomposition prediction model parameter optimization combined model modeling training simulation result analysis
  • 相关文献

参考文献12

二级参考文献221

共引文献617

同被引文献64

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部