期刊文献+

基于改进AKAZE的特征匹配算法及应用 被引量:5

Feature Matching Algorithm of Huizhou Architecture Based on Improved AKAZE
下载PDF
导出
摘要 徽派建筑群的代表性构件样本量大,且由于相同类型构件外观造型相似,仅花纹图案有所区别,所以导致难以判断所采集图像的归属。提出了G-AKAZE方法用于特征匹配,有效提升了匹配速度和精确度,并将其用于徽派建筑图像数据的匹配。首先非线性方法构造尺度空间,并用快速显示扩散数学框架FED来快速求解偏微分方程,再用Hessian矩阵进行特征点检测,根据特征点获取主方向并旋转图像,通过采样网格的像素完成尺度自适应,最后将图像网格化,去除误判点完成特征匹配。此方法能快速且准确地对目标图像进行特征匹配,实验使用前期采集的徽派建筑图像数据,在匹配速度和匹配对数两方面的表现优于同类特征匹配方法。 The representative components of the Huizhou architectural complex have a large sample size and it is difficult to determine the belonging classification of the collected images.In this paper,g-AKAZE method is proposed for feature matching,which can effectively improve the matching speed and accuracy,and it is used for the matching of Huizhou architecture image data.First,a non-linear method is used to construct the scale space,and the fast differential display mathematical framework FED is used to quickly solve partial differential equations.Then Hessian matrix is used to detect feature points.The main direction is obtained based on the feature points and then rotate the image.The pixels of the grid are sampled to complete the scale adaptation.Finally,the image is meshed to remove the misjudgment points to complete the feature matching.This method is used to match the features of the target images quickly and accurately.The experiment uses the image data of Huizhou Architecture collected earlier,and the matching speed and matching logarithm are better than those of the similar method.
作者 张润梅 宦思琪 张媛 徐静雯 ZHANG Runmei;HUAN Siqi;ZHANG Yuan;XU Jingwen(School of Electronic and Information Engineering,Anhui Jianzhu University,Hefei 230601,China)
机构地区 安徽建筑大学
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2021年第7期266-275,共10页 Journal of Chongqing University of Technology:Natural Science
基金 安徽省自然科学基金项目(2008085MF218) 安徽省高校学科拔尖人才学术资助项目(gxbj ZD26)。
关键词 特征匹配 AKAZE 误匹配 徽派建筑 feature matching AKAZE mismatch points Huizhou architecture
  • 相关文献

参考文献3

二级参考文献38

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:153
  • 2Canny, J., 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal Mach. IntelL, 8(6):679-698. Idol: 10.1109/TPAMI. 1986.4767851 ].
  • 3Catalano, C.E., Mortara, M., Spagnuolo, M., Falcidieno, B., 2011. Semantics and 3D media: current issues and per- spectives. Comput. Graph., 35(4):869-877. [doi:l 0.1016/j cag.2011.03.040].
  • 4Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Fini- kelstein, A., Funkhouser, T., Rusinkiewicz, S., 2008. Where do people draw lines? ACM Trans. Graph., 27(3), Article 88, p. 1 - 11. [doi: 10.1145/1360612.1360687].
  • 5DeCarlo, D., Finkelstein, A., Rusinkiewicz, S., Santella, A., 2003. Suggestive contours for conveying shape. ACM Trans. Graph., 22(3):848-855. [doi:10.1145/882262.882 354].
  • 6Hertzmann, A., 1999. Introduction to 3D Non-photorealistic Rendering: Silhouettes and Outlines. ACM SIGGRAPH Course Notes, p. 15-29.
  • 7Hertzmann, A., 2010. Non-photorealistic Rendering and the Science of Art. Proc. 8th Int. Symp. on Non-photorealistic Animation and Rendering, p.147-157. [doi:10.1145/ 1809939.1809957].
  • 8Interrante, V., Fuchs, H., Pizer, S., 1995. Enhancing Trans- parent Skin Surfaces with Ridge and Valley Lines. Proc. 6th Conf. on Visualization, p.52-59. [doi: 10.1109NISUAL 1995.480795].
  • 9Judd, T., Durand, F., Adelson, E.H., 2007. Apparent ridges for line drawing. ACM Trans. Graph., 26(3), Article 19. [doi:10.1145/1276377.1276401].
  • 10Kalogerakis, E., Nowrouzezahrai, D., Simari, P., McCrae, J., Hertzmann, A., Singh, K., 2009. Data-driven curvature for real-time line drawing of dynamic scenes. A CM Trans. Graph., 28(1), Article 11, p.l-13. [doi:10.1145/1477926. 1477937].

共引文献53

同被引文献32

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部