摘要
利用反向传播(BP)神经网络,在MATLAB中搭建汽车造型轮廓与意象语义之间的关系模型,快速判断汽车侧面造型风格。随后利用卷积神经网络(CNN)搭建的表情识别模型建立汽车造型评价系统,分析并识别用户对于新设计的喜好程度,以得到符合用户情感需求的汽车侧面造型方案。最后通过实例验证方法的可行性,并推断出流线型汽车的最佳曲率范围。实验结果表明,基于神经网络的汽车造型量化评价方法可以较准确地对产品造型设计进行评价并以数据形式得到具体意象的侧面造型。
By using the back propagation(BP)neural network,the relationship between car styling contours and image semantics was constructed in MATLAB to quickly judge the vehicle side modeling style.Then the expression recognition model built by the convolutional neural network(CNN)was employed to establish the automobile model evaluation system,and to analyze and identify users’preferences for the new design,thus obtaining the vehicle side modeling scheme which can meet users’emotional needs.Finally,the feasibility of the method was verified through examples,and the optimal curvature range of the flow-type car was inferred.The experimental results show that the quantitative evaluation method of automobile modeling based on neural networks can evaluate the product modeling design more accurately and produce the side shape of concrete image in the form of data.
作者
王欢欢
初胜男
顾经纬
WANG Huan-huan;CHU Sheng-nan;GU Jing-wei(College of Mechanical Engineering,Tianjin University of Science&Technology,Tianjin 300222,China;Tianjin Key Laboratory of Integrated Design and On-Line Monitoring for Light Industry&Food Machinery and Equipment,Tianjin 300222,China)
出处
《图学学报》
CSCD
北大核心
2021年第4期688-695,共8页
Journal of Graphics
基金
国家自然科学基金项目(51505333)。
关键词
BP神经网络
汽车侧面造型
意象
表情识别
用户情感需求
BP neural network
vehicle side modeling
imagery
facial expression recognition
user emotional needs