摘要
玻璃纤维增强塑料(简称“GFRP”)支撑结构节点转动刚度是研究GFRP支撑结构稳定性的重要参数,但目前尚未展开研究。本文首先通过试验对不同拧紧力矩下GFRP支撑结构扣件节点转动刚度进行研究,建立了弯矩-转角曲线,得到了不同拧紧力矩下的节点转动刚度;然后建立有限元模型对拧紧力矩如何影响扣件节点转动刚度进行机理分析;最后得到了不同拧紧力矩对节点转动刚度的影响机理。研究表明:GFRP圆管扣件连接节点属于半刚性节点,增大节点的拧紧力矩,节点的转动刚度随着拧紧力矩的增大而增大。本文得到的GFRP扣件节点转动刚度可以为GFRP扣件式支撑结构整体稳定承载力的研究与计算提供理论依据。
The torsional stiffness of GFRP support structure joints is an important parameter to study the stability of GFRP support structure,but it has not been studied.In this paper,the torsional stiffness of fastener joints of GFRP support structure under different tightening torques is studied through experiments,and the bending moment-rotation angle curve is established to obtain the torsional stiffness of joints under different tightening torques.Then the finite element model is established to analyze how the tightening torque affects the torsional stiffness of the fastener joint.Finally,the influence mechanism of different tightening torques on the rotational stiffness of the joint is obtained.The research shows that the GFRP tube fastener connection node is a semi-rigid node.With the increase of the tightening torque of the node,the rotational stiffness of the node increases with the increase of the tightening torque.The torsional stiffness of GFRP fastener joints obtained in this paper can provide a theoretical basis for the research and calculation of the overall stability bearing capacity of GFRP fastener support structure.
作者
钱清锋
邓安仲
李飞
罗盛
高训鹏
施霖
QIAN Qing-feng;DENG An-zhong;LI Fei;LUO Sheng;GAO Xun-peng;SHI Lin(School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China;National Disaster Emergency Equipment Engineering Technology Research Center,Army Logistics University of PLA,Chongqing 401331,China;Dept.of Military Installations,Army Logistics University of PLA,Chongqing 401331,China)
出处
《复合材料科学与工程》
CAS
北大核心
2021年第7期11-16,共6页
Composites Science and Engineering
基金
国防基地建设项目技术领域基金(2020-JCJQ-JJ-518)。
关键词
GFRP支撑结构
转动刚度
弯矩-转角曲线
有限元分析
试验研究
复合材料
GFRP supporting structure
rotational stiffness
bending moment-angle curve
finite element analysis
experimental research
composites