摘要
有限集模型预测控制(FCS-MPC)存在控制性能依赖于模型参数准确度的问题。为此,在永磁同步电机FCS-MPC电流控制场合,提出一种比例-积分-微分(PID)型代价函数,包括用以消除稳态电流误差的积分误差代价和具有降低电流方均根误差功能的微分误差代价。在PID型代价函数概念中,可将传统的给定跟踪型代价函数归类为比例误差代价。实验结果证明,采用PID型代价函数的FCS-MPC,能在较大参数变化范围将平均控制误差降为零,并抑制电流纹波,降低FCS-MPC对模型参数的依赖性,同时保留FCS-MPC动态响应快的优点。
The performance of the finite-control-set model predictive control(FCS-MPC)depends on the accuracy of model parameters.Therefore,this paper proposed a PID-type cost function for the FCS-MPC in the current control of the permanent magnet synchronous motors,including the integral cost term to eliminate the steady-state current error and the differential cost term to reduce the root-mean-square current error.In the concept of the PID-type cost function,the traditional reference-tracking cost can be categorized as a proportional cost.Experimental results show that the FCS-MPC current control with the PID-type cost function can reduce the steady-state current error to zero and suppress the current ripple in a wide parameter range.Therefore,the parameter independency of the FCS-MPC can be improved while retaining the advantage of fast dynamic response of the FCS-MPC.
作者
陈卓易
屈稳太
Chen Zhuoyi;Qu Wentai(School of Information Science and Engineering NingboTech University,Ningbo 315100 China)
出处
《电工技术学报》
EI
CSCD
北大核心
2021年第14期2971-2978,共8页
Transactions of China Electrotechnical Society
基金
国家自然科学基金(51907176)
宁波市科技创新2025重大专项(2019B10080)资助项目。
关键词
有限集模型预测控制
代价函数
永磁同步电机
电流控制
Finite-control-set model predictive control(FCS-MPC)
cost function
permanent magnet synchronous motor(PMSM)
current control