期刊文献+

缺陷汽车玻璃检测方法

Defect car glass detection method
下载PDF
导出
摘要 汽车玻璃生产过程中会造成断裂、划痕、漏点等表面缺陷,本文结合机器视觉与深度学习提出了自动识别缺陷玻璃的方法。首先,利用玻璃前景、背景人工合成缺陷样本解决负样本不足的问题;将玻璃缺陷细分为多个类别,同时对样本进行分类;将玻璃图片进行频域处理过滤背景噪音,再将其与玻璃灰度化后图片进行合成作为分类网络的输入;构造以Alexnet网络为模板的多分类网络进行训练和预测。经过实验验证,该方法准确有效,为玻璃缺陷检测提供了一种可靠的检测方法。 In the production process of automobile glass,surface defects such as breaks,scratches,leaks,and fractures will be caused. This paper proposes a method to automatically identify defective glass by combining machine vision and deep learning. First,use the glass foreground and background to artificially synthesize defect samples to solve the problem of insufficient negative samples;subdivide the glass defects into multiple categories and classify the samples at the same time;process the glass image in the frequency domain to filter the background noise,and then combine it with the glass After graying,the picture is synthesized as the input of the classification network;a multi-classification network with the Alexnet network as the template is constructed for training and prediction. After experimental verification,this method is accurate and effective,we provides a reliable detection method for glass defect detection.
作者 陈晨 董帅 梁椅辉 邹昆 CHEN Chen;DONG Shuai;LIANG YiHui;ZOU Kun(Zhongshan Institute,University of Electronic Science Technology of China,Zhongshan Guangdong 528400,China)
出处 《智能计算机与应用》 2021年第5期198-201,共4页 Intelligent Computer and Applications
关键词 玻璃缺陷检测 深度学习 多分类网络 glass defect detection deep learning multiple-classification net
  • 相关文献

参考文献5

二级参考文献53

  • 1王立坤,赵晋云,付松广,谭东杰,李健,靳世久.基于神经网络的管道泄漏声波信号特征识别[J].仪器仪表学报,2006,27(z3):2247-2249. 被引量:15
  • 2Tomasi C, Manduchi R. Bilateral filtering for gray and color images [ A ]. In: Proceedings of the Sixth International Conference on Computer Vision [ C ], Washington, DC, USA: IEEE Computer Society, 1998: 839-846.
  • 3Overton K J, Weymouth T E. A noise reducing preprocessing algorithm [ A ] . In: Proceedings of IEEE Computer Science Conference on Pattern Recognition and Image Processing [ C ], Chicago, Illinois, USA, 1979: 498-507.
  • 4Pham T Q, Vliet L J. Separable bilateral filtering for fast video preproeessing [ A]. In: Proceedings of IEEE International Conference on Multimedia and Expo [ C ] , Amsterdam, Netherlands, 2005 : 454- 457.
  • 5Lim Y C, Parker S R. FIR filter design over a discrete powers-of-two coefficient space [ J]. IEEE Transactions on Acoustic Speech, Signal Processing, 1983, 31(6): 583-591.
  • 6Lim Y C. Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude [ J ]. IEEE Transactions on Circuits and Systems, 1990, 37(12) : 1480-1486.
  • 7Li D, Lim Y C, Lian Y, et al. A polynomial-time algorithm for designing FIR filters with power-of-two eoeffieients [ J ]. IEEE Transactions on Signal Processing, 2002, 50 (8) : 1935-1941.
  • 8Yu J H, Lian Y. Frequency-response masking based filters with the even-length bandedge shaping filter E A ]. In : Proceedings of the 2004 International Symposium on Circuits and Systems ~ C ~ , Vancouver, British Columbia, Canada, 2004: 536-539.
  • 9Gonzalez R C, Woods R E. Digital Image Processing Second Edition ( English Edition ) [ M ] . Beijing : Publishing House of Electronics Industry, 2002.
  • 10Coleman T, Branch M A, Grace A. User's Guide of Optimization Toolbox [ M]. Natiek, MA, USA: The Math Works, 1999.

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部