期刊文献+

Clustering spatio-temporal bi-partite graphs for finding crowdsourcing communities in IoMT networks 被引量:1

原文传递
导出
摘要 The Internet of Moving Things is rapidly becoming a reality where intelligent devices and infrastructures are fostering real-time data sus-tainability in smart cities and advancing crowdsourced tasks to improve energy consumption,waste management,and traffic operations.These intelligent devices create a complex network scenario in which they often move together or in conjunction with one another to complete crowdsourced tasks.Our research premise is that mobility relationships matter when performing these tasks,and therefore,a graph model based on representing the changes in mobility relation-ships is needed to help identify the neighbour devices that are moving close to one another in our physical world but also seamlessly con-nected in their virtual world.We propose a bi-partite community mobility graph model for linking intelligent devices in both virtual and physical worlds,as well as reaching a trade-off between crowd-sourced tasks designed with explicit and implicit citizen participation.This paper aims to explore a bi-partite graph as a promising spatiotemporal representation of IoMT networks since changes in mobility relationships over time can indicate volunteer organisation at the device and community levels.The Louvain community detection method is proposed to find communities of intelligent devices to reveal a value conscious participation of citizens.The proposed bi-partite graph model is evaluated using a real-world scenario in transportation,confirming the main role of evolving communities in developing crowdsourcing IoMT networks.
出处 《Big Earth Data》 EI 2021年第1期24-48,共25页 地球大数据(英文)
基金 supported by the NSERC/Cisco Industrial Research Chair,Grant IRCPJ 488403-1.
  • 相关文献

参考文献1

共引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部