期刊文献+

Exploration of the mechanism by which icariin modulates hippocampal neurogenesis in a rat model of depression 被引量:4

下载PDF
导出
摘要 Icariin(ICA) has a significant capacity to protect against depression and hippocampal injury,but it cannot effectively cross the bloodbrain barrier and accumulate in the brain.Therefore,the mechanism by which ICA protects against hippocampal injury in depression remains unclear.In this study,we performed proteomics analysis of cerebrospinal fluid to investigate the mechanism by which ICA prevents dysfunctional hippocampal neurogenesis in depression.A rat model of depression was established through exposure to chronic unpredictable mild stress for 6 weeks,after which 120 mg/kg ICA was administered subcutaneously every day.The results showed that ICA alleviated depressive symptoms,learning and memory dysfunction,dysfunctional neurogenesis,and neuronal loss in the dentate gyrus of rats with depression.Neural stem cells from rat embryonic hippocampi were cultured in media containing 20% cerebrospinal fluid from each group of rats and then treated with 100 μM corticosterone.The addition of cerebrospinal fluid from rats treated with ICA largely prevented the corticosterone-mediated inhibition of neuronal proliferation and differentiation.Fifty-two differentially expressed proteins regulated by chronic unpredictable mild stress and ICA were identified through proteomics analysis of cerebrospinal fluid.These proteins were mainly involved in the ribosome,PI3 K-Akt signaling,and interleukin-17 signaling pathways.Parallel reaction monitoring mass spectrometry showed that Rps4 x,Rps12,Rps14,Rps19,Hsp90 b1,and Hsp90 aa1 were up-regulated by chronic unpredictable mild stress and down-regulated by ICA.In contrast,Htr A1 was down-regulated by chronic unpredictable mild stress and up-regulated by ICA.These findings suggest that ICA can prevent depression and dysfunctional hippocampal neurogenesis through regulating the expression of certain proteins found in the cerebrospinal fluid.The study was approved by the Experimental Animal Ethics Committee of Guangzhou University of Chinese Medicine of China in March 2017.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期632-642,共11页 中国神经再生研究(英文版)
基金 supported by the National Natural Science Foundation of China,No.81774102 (to LLW)。
  • 相关文献

参考文献4

二级参考文献34

共引文献45

同被引文献57

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部