摘要
推导给出了两个新的Hansen系数X_(k)^(-(n+1),m)的递推关系:{2k√1-e^(2)X^(-n,m)_(k)=(m-n)eX^(-(n+1),m-1)_(k)+2mX^(-(n+1),m)_(k)+(m+n)eX^(-(n+1),m+1)_(k),(R5){(m+1)(m-n-1)(n-m)e^(2)X^(-(n+1),m-2)_(k)_(m+1)(m+n-1)(2m-n-1)e^(2)X^(-(n+1),m)_(k)_(m-1)(m-n+1)(n+2m+1)e^(2)X^(-(n+1),m)_(k)+(m+1)(m-1)[4m+2me^(2)-4k(1-e^(2))^(3/2)]X^(-(n+1),m)_(k)+2k(m-1)(n+2m+1)e√1-e^(2)X^(-n,m+1)_(k)+2+(m+1)(2m-n-1)e√1-e^(2)X^(-n,m-1)_(k)_(m-1)(n+m+1)(n+m)e^(2)X^(-(n+1),m+2)_(k)=0,(R6)其中,n、m和k是Hansen系数X_(k)^(-(n+1),m)的3个指标,e为轨道偏心率.递推公式(R5)可以执行普通Hansen系数的向后递推,需要一行初值,公式简单.递推公式(R6)可以执行偏心率函数的向前递推,需要两行初值,比Vakhidov给出的递推公式明显简单.算例说明,这两种递推是有效的.
Two new recursion formulae of Hansen coefficents X_(k)^(−(n+1),m) are deduced:{2k√1-e^(2)X^(-n,m)_(k)=(m-n)eX^(-(n+1),m-1)_(k)+2mX^(-(n+1),m)_(k)+(m+n)eX^(-(n+1),m+1)_(k),(R5){(m+1)(m-n-1)(n-m)e^(2)X^(-(n+1),m-2)_(k)_(m+1)(m+n-1)(2m-n-1)e^(2)X^(-(n+1),m)_(k)_(m-1)(m-n+1)(n+2m+1)e^(2)X^(-(n+1),m)_(k)+(m+1)(m-1)[4m+2me^(2)-4k(1-e^(2))^(3/2)]X^(-(n+1),m)_(k)+2k(m-1)(n+2m+1)e√1-e^(2)X^(-n,m+1)_(k)+2+(m+1)(2m-n-1)e√1-e^(2)X^(-n,m-1)_(k)_(m-1)(n+m+1)(n+m)e^(2)X^(-(n+1),m+2)_(k)=0,(R6)where n,m and k are three indexes of Hansen coefficients X_(k)^(−(n+1),m),and e is the orbital eccentricity.Recursion formula(R5)can be used to perform the backward recursion of ordinary Hansen coefficents with one line of initial values,and it is simple.Recursion formula(R6)can be used to perform the forward recursion of eccentricity functions with two lines of initial values,and it is obviously simpler than Vakhidov’s recursion formula.Numerical example shows that these two new recursion formulae of Hansen coefficents are effective.
作者
吴连大
张明江
WU Lian-da;ZHANG Ming-jiang(Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210023;Key Laboratory of Space Object and Debris Observation,Chinese Academy of Sciences,Nanjing 210023)
出处
《天文学报》
CAS
CSCD
北大核心
2021年第4期1-9,共9页
Acta Astronomica Sinica
基金
国家自然科学基金项目(11873096)
中国科学院青年创新促进会(2017367)资助
关键词
天体力学
摄动理论:摄动函数及其展开方法
方法:数值
celestial mechanics
perturbation theory:perturbation function and its expansion method
methods:numerical