期刊文献+

基于随机矩阵和能量双联合的协作频谱感知 被引量:1

Cooperative spectrum sensing based on random matrix and energy dual joint
下载PDF
导出
摘要 针对频谱感知算法检测概率较低的问题,提出一种基于随机矩阵和能量双联合的协作频谱感知算法。根据随机矩阵理论,对最大最小特征值(Maximum Minimum Eigenvalue,MME)算法进行优化,并联合能量检测算法进行协作感知。在已知虚警概率情况下,对门限值进行推导。仿真结果表明,提出的算法与特征值之比改进算法、传统MME算法、能量检测算法相比,低虚警概率情况下的检测概率大约提升了43%,低采样点数情况的检测概率大约提升了2%。在保持较高检测概率的同时,信噪比大于-11 dB情况下,相比特征值之比改进算法和传统MME算法,该算法的检测速率有明显提升,在信噪比为-4 dB时,检测速率大约提升了52%。 Aiming at the shortcomings of low detection probability of current spectrum sensing algorithm,a cooperative spectrum sensing algorithm based on random matrix and energy dual joint is proposed.According to the random matrix theory,the Maximum Minimum Eigenvalue(MME)algorithm is optimized and collaborative perception is carried out by combining the energy detection algorithm.In case of knowing false alarm probability,the threshold value is derived.The simulation results show that compared with the improved algorithm of eigenvalue ratio,the traditional MME algorithm and the energy detection algorithm,the detection probability of the proposed algorithm is increased by about 43%in the cases of low false alarm probability,and the detection probability in the cases of low sampling points is increased by about 2%.While maintaining a high detection probability,when the SNR is greater than-11 dB,the detection rate of this algorithm is significantly improved compared with both the improved algorithm of eigenvalue ratio and the traditional MME algorithm.When the SNR is-4 dB,the detection rate has increased by approximately 52%.
作者 石新 刘顺兰 SHI Xin;Liu Shunlan(School of Electronic Information,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2021年第4期1-6,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(U1809201) 浙江省自然科学基金资助项目(LY18F010013)。
关键词 频谱感知 能量检测 随机矩阵理论 协作感知 spectrum sensing energy detection random matrix theory collaborative perception
  • 相关文献

参考文献2

二级参考文献31

  • 1Haykin S. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 2Cabric D, Mishra S M, and Brodersen R W. Implementation issues in spectrum sensing for cognitive radios[C]. Proc. of 38th Asilomar Conf. Signals, System, and Computers, Monterey, CA, Nov. 2004: 772-776.
  • 3Digham F, Alouini M, and Simon M. On the energy detection of unknown signals over fading channels[C]. IEEE Int. Conf. Commun., Seattle, Washington, USA, May 2003, Vol. 5: 3575-3579.
  • 4Tang H. Some physical layer issues of wide-band cognitive radio systems[C]. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA. Nov. 2005: 151-159.
  • 5Sutton P D, Nolan K E, and Doyle L E. Cyclostationary signatures in practical cognitive radio applications[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 13-24.
  • 6Zeng Y and Liang Y C. Maximum-minimum eigenvalue detection for cognitive radio[Cl. The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. (PIMRC), Athens, Greece, Sep. 2007.
  • 7Penna F and Garello R. Theoretical performance analysis of eigenvalue-based detection, http://arxiv.org/pdf /0907. 1523v2, 2009.9.
  • 8王颖喜,卢光跃.基于空间谱的频谱感知办法[C].第三届全国通信新理论与新技术学术大会,宁波,2009,10.
  • 9Quan z, Cui S, Poor H V, and Sayed A H. Collaborative wideband sensing for cognitive radios[J]. IEEE Signal Processing Magazine, 2008, 25(6): 60-73.
  • 10Sahai A, Hoven N, and Tandra. Some fundamental limits on cognitive radio[C]. Allerton Conf. on Control, Communication, and Computation, Monticello, Oct. 2004. doi=10.1.1.123.5645&zrep.

共引文献54

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部