摘要
将对称特征值互补问题等价转化为单纯形约束的瑞利商极大化问题,提出一种交替方向乘子法。通过引入辅助变量,将单纯形约束进行分离,避免了单纯形集合投影无封闭解的缺陷。数值实验结果表明,与经典的谱投影梯度算法相比,在求解较大规模问题时,提出的方法需要更少的计算时间。
The symmetric eigenvalue complementarity problem is equivalent to the problem of maximizing the Rayleigh quotient with simplex constraints,and the alternating direction method of multipliers is proposed.By introducing instrumental variables,the simplex constraint is separated to avoid the defect that the projection of the simplex set has no closed solution.Compared with the classical spectral projection gradient algorithm,the numerical results show that the proposed method takes less computing time for solving large scale problems.
作者
赵寒
何洪津
ZHAO Han;HE Hongjin(School of Sciences,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2021年第4期98-102,共5页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
浙江省自然科学基金资助项目(LY20A010018)。