期刊文献+

方腔内Al_(2)O_(3)-H_(2)O纳米流体热毛细对流的格子Boltzmann模拟

Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al_(2)O_(3)-H_(2)O Nanofluids in Square Cavity
原文传递
导出
摘要 采用格子Boltzmann方法研究纳米颗粒形状影响下方腔内纳米流体热毛细对流的强化传热效果,主要分析了纳米粒子体积分数、颗粒形状以及Marangoni数Ma等相关参数对于纳米流体热毛细对流换热过程的影响。结果表明:长径比(长/半径)对纳米流体换热效果有影响,形状因子越大,平均Nu数Nu_(ave)越大。随着体积分数的增加,棒状、盘状和正方体状纳米颗粒均使热毛细对流的Nu_(ave)数减少,球状纳米颗粒条件下热毛细对流的Nu_(ave)数增加。Ma数越大,纳米流体热毛细对流的自由表面速度越大,对流换热效果也随之增强。 The heat transfer effect of nanofluid in thermal marangoni convection was studied by using lattice Boltzmann method. The effects of nanoparticle volume fraction, particle shape and marangoni number(Ma) were analyzed. As a result, the heat transfer effect of nanofluids was affected by the ratio of length to radius. The larger the shape factor, the larger the average Nu number. As the volume fraction increased, cylinder, platelet, and brick nanoparticles all could reduce the average Nu number of thermal marangoni convection and spherical nanoparticles could increase the average Nu number. Besides, the larger Ma was, the larger the free surface velocity of the thermal marangoni convection of nanofluids was, and the convection heat transfer effect could also be enhanced.
作者 卢巧颖 LU Qiaoying(School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《材料开发与应用》 CAS 2021年第2期1-10,共10页 Development and Application of Materials
关键词 纳米流体 热毛细对流 格子BOLTZMANN方法 颗粒形状 nanofluid thermal marangoni convection lattice Boltzmann method particle shape
  • 相关文献

参考文献5

二级参考文献47

  • 1孙猛,刘靖,李志宏,刘石.多层开口方腔混合对流换热的数值模拟[J].建筑科学,2007,23(2):51-53. 被引量:1
  • 2FUERSTMAN M, GARSTECKI P, WHITESIDES G M. Coding/decoding and reversibility of droplet trains in microfluidic networks [ J ]. Science, 2007,315 ( 5813 ) : 828 - 832.
  • 3PRAKASH M, GERSHENFELD N. Microfluidic bubble logic[ J]. Science, 2007,315 (5813) :832 - 835.
  • 4THEBERGE A, COURTOIS F, SCHAERLI Y, et al. Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology [ J ]. Angewandte Chemic International Edition, 2010,49 ( 34 ) : 5846 - 5868.
  • 5KELLY B, BARET J, TALY V, GRIFFITHS A. Miniaturizing chemistry and biology in microdroplets [ J ]. Chemical Communications, 2007, ( 18 ) : 1773 - 1788.
  • 6ZHENG B, ROACH L, ISMAGILOV R. Screening of protein crystallization conditions on a microfluidic chip using nanoliter- size droplets [ J ]. Journal of the American Chemical Society, 2003,125 ( 37 ) : 11170 - 11171.
  • 7SONG H, TICE J, ISMAGILOV R. A microfluidic system for controlling reaction networks in time[ J]. Angewandte Chemic, 2003,115(7) :792 -796.
  • 8CYGAN Z, CABRAL J, BEERS K, AMIS E. Microfluidic platform for the generation of organic-phase microreactors [ J]. Langmuir, 2005,21 ( 8 ) :3629 - 3634.
  • 9BRILL J. Multiphase flow in wells[ J]. Journal of Petroleum Technology, 1987,39( 1 ) : 15 - 21.
  • 10LENORMAND R, TOUBOUL E, ZARCONE C. Numerical models and experiments on immiscible displacements in porous media[J]. Journal of Fluid Mechanics. 1988,189(4) :165-187.

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部