摘要
在学校、医院、商场等公共生活服务场所周边路段上经常发生的交通拥堵具有特殊性:是由特定事件触发特定出行者短时间扎堆聚集所导致的一种特殊类型的交通拥堵,这类拥堵的成因及治理对策具有重要的研究价值。利用自动车辆识别(automatic vehicle identification,AVI)技术对出行者的长、短期交通行为进行重构,探究导致公共生活服务场所周边路段的拥堵原因及拥堵责任划分方法。基于AVI数据建立了个体长、短期交通行为画像方法,通过多层卷积神经网络和层级聚类模型精确定位出导致公共生活服务场所周围路段拥堵的主要责任车辆。针对同一路段上的不同车辆,依据其长、短期出行行为特征,进行个性化精准管理,是在有限资源限制条件下解决公共生活服务场所周边拥堵问题的有效途径。选取安徽宣城市第六中学门前的常发路段拥堵作为研究对象。结果表明:对于经过案例学校门前路段的所有出行者来说,只需对其中0.5%~0.7%的致堵车辆采取重点管理措施就可以有效缓解学校门前路段的拥堵问题。
It is a special type of congestion that periodically occurs on the road around service centers such as schools,hospitals,and malls.This kind of congestion is generally caused by periodic impulsive aggregation of specific travelers for certain events.The cause and relieving strategies for such congestion have both theoretical research and practical applicative values.The individual long-short term traffic behaviors were reconstructed based on automatic vehicle identification(AVI)technologies.The congestion around the service centers was identified through the reconstruction of the individual long-short term traffic behaviors.The vehicles that primarily responsible for impulsive aggregation congestion were precisely targeted via a proposed individual long-short term traffic behavior portrait framework,convolutional neural networks and prototype-based clustering method.According to the characteristics of long-short term travel behavior,the personalized precise management strategies were effective ways to relieve the congestion around service centers for different vehicles on the same road section under the condition of limited resources.Taking the frequent road congestion in front of the sixth middle school in Xuancheng City of Anhui Province as the research object,it is found that for all travelers passing through the road section in front of the case school,only 0.5%~0.7%of the blocking vehicles need to take key management measures to effectively alleviate the congestion problem in front of the school.
作者
栗波
余志
LI Bo;YU Zhi(Research Center of Intelligent Transport System,Sun Yat-Sen University,Guangzhou 510275,China;Guangdong Provincial Key Laboratory of Intelligent Transport System,Guangzhou 510006,China)
出处
《科学技术与工程》
北大核心
2021年第20期8670-8679,共10页
Science Technology and Engineering
基金
国家重点研发计划(2018YFB1601102,2018YFB1601105)
国家自然科学基金(U1611461)。
关键词
拥堵成因
特定场所
数据增强
长短期行为画像
致堵责任划分
congestion analysis
specific locations
data enhancement
long-short term traffic behavior portrait
congestion responsibility division