摘要
燃煤机组面临着灵活运行和超低排放的双重压力,机组快速深度变负荷对选择性催化还原(selective catalytic reduction,SCR)脱硝系统的控制提出了更高要求。提出一种兼顾超低排放和经济成本的多目标优化控制方法,将脱硝成本加入优化目标函数,采用预测控制结构,结合神经网络和遗传算法进行模型建立和控制量寻优,实现了喷氨量的优化控制。仿真结果表明,该方法在满足排放标准的同时降低了脱硝成本,并能适应锅炉大范围变工况运行。
Coal-fired units are faced with the dual pressures of flexible operation and ultra-low emissions. The rapid and deep load change of the units puts forward higher requirements for the control of the SCR(Selective Catalytic Reduction) denitrification system. This paper proposed a multi-objective optimization control method that takes into account ultra-low emissions and economic costs. The cost of denitration was added to the optimization objective function, and a predictive control structure was adopted. The neural network and genetic algorithm were also separately used to establish the model and optimize the control value to achieve the ammonia injection optimization. The simulation results show that the method reduces the cost of denitration while ensuring the emission standards, and can adapt to the large-scale variable operating conditions of the boiler.
作者
杨婷婷
白杨
吕游
张文广
YANG Tingting;BAI Yang;LYU You;ZHANG Wenguang(Beijing Key Laboratory of New Technology and System on Measuring and Control for Industrial Process(North China Electric Power University),Changping District,Beijing 102206,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2021年第14期4905-4911,共7页
Proceedings of the CSEE
基金
国家自然科学基金(青年科学基金项目)(KZ17010103)。
关键词
选择性催化还原
预测控制
遗传算法
神经网络
多目标优化
机组灵活性
selective catalytic reduction
forecast control
genetic algorithm
neural network
multi-objective optimization
unit flexibility