期刊文献+

基于激光雷达的3D实时车辆跟踪 被引量:16

3D Real-Time Vehicle Tracking Based on Lidar
下载PDF
导出
摘要 3D多目标跟踪算法是智能车辆感知算法的重要组成部分,现有跟踪算法多与检测算法耦合以提高精度,导致算法实时性不足。针对此问题,本文中提出一种基于激光雷达的3D实时车辆跟踪算法。首先,对于激光雷达检测结果杂波较少的工况,提出结构精简的双波门GNN关联算法,有效提升其关联速度及精度;其次,优化关联向量与关联距离,既保证了算法的普适性,又提升其跟踪精度;最后,针对3D目标运动情况使用3D IMM-KF算法解决了3D机动目标的跟踪问题。基于公开数据集KITTI,本文算法在获得266.1 FPS跟踪速度的前提下可实现81.55%的MOTA精度;基于自研无人车平台进行面对遮挡工况的验证,结果表明本算法具有良好的目标跟踪及关联性能。 The 3D multi-object tracking algorithm is an essential part of the intelligent vehicle perception algorithm.The existing tracking algorithm is mostly coupled with the detection algorithm to improve the accuracy,resulting in insufficient real-time performance.To solve this problem,a 3D real-time vehicle tracking algorithm based on lidar is proposed.Firstly,for the working conditions with less clutter in the detection results of lidar,a double-validation gate GNN algorithm with a simple structure is proposed to effectively improve its correlation speed and accuracy;secondly,the correlation vector and correlation distance are optimized,which improves the tracking accuracy while ensuring the generality of the algorithm.Finally,the 3D IMM-KF algorithm is used to solve the tracking problem of 3D object with changing dynamics.The proposed algorithm achieves a MOTA accuracy of 81.55%at a tracking speed of 266.1 FPS according to the public data set KITTI.Based on the self-developed unmanned vehicle platform,the verification of facing occlusion conditions shows that the algorithm has good object tracking and correlation performance.
作者 王海 李洋 蔡英凤 孙恺 陈龙 Wang Hai;Li Yang;Cai Yingfeng;Sun Kai;Chen Long(School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013;Institute of Automotive Engineering,Jiangsu University,Zhenjiang 212013;Hesai Instruments Inc,Shanghai 201702)
出处 《汽车工程》 EI CSCD 北大核心 2021年第7期1013-1021,共9页 Automotive Engineering
基金 国家重点研发计划(2018YFB0105000) 国家自然科学基金(U20A20333,52072160,51875255) 江苏省重点研发项目(BE2019010-2)资助。
关键词 无人车 激光雷达 数据关联 多目标跟踪 unmanned vehicles lidar data association multi-object tracking
  • 相关文献

参考文献3

二级参考文献11

共引文献74

同被引文献152

引证文献16

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部