期刊文献+

Single-cell DNA methylome analysis of circulating tumor cells

下载PDF
导出
摘要 Objective: Previous investigations of circulating tumor cells(CTCs) have mainly focused on their genomic or transcriptomic features, leaving their epigenetic landscape relatively uncharacterized. Here, we investigated the genome-wide DNA methylome of CTCs with a view to understanding the epigenetic regulatory mechanisms underlying cancer metastasis.Methods: We evaluated single-cell DNA methylome and copy number alteration(CNA) in 196 single cells,including 107 CTCs collected from 17 cancer patients covering six different cancer types. Our single-cell bisulfite sequencing(sc BS-seq) covered on average 11.78% of all Cp G dinucleotides and accurately deduced the CNA patterns at 500 kb resolution.Results: We report distinct subclonal structures and different evolutionary histories of CTCs inferred from CNA and DNA methylation profiles. Furthermore, we demonstrate potential tumor origin classification based on the tissue-specific DNA methylation profiles of CTCs.Conclusions: Our work provides a comprehensive survey of genome-wide DNA methylome in single CTCs and reveals 5-methylcytosine(5-m C) heterogeneity in CTCs, addressing the potential epigenetic regulatory mechanisms underlying cancer metastasis and facilitating the future clinical application of CTCs.
出处 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2021年第3期391-404,共14页 中国癌症研究(英文版)
基金 financially supported by the Guangdong Province Key Research and Development Program (No. 2019B020226002) the National Science and Technology Major Project (No. 2019YFC1315702)。
  • 相关文献

参考文献1

二级参考文献59

  • 1Wen L, Tang F. Reconstructing complex tissues from single-cell analyses. Cell 2014; 157:771–773.
  • 2Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 2013; 14:618–630.
  • 3Ramskold D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 2012; 30:777–782.
  • 4Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2012; 2:666–673.
  • 5Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014; 343:776–779.
  • 6Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 2009; 6:377–382.
  • 7Sasagawa Y, Nikaido I, Hayashi T, et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 2013; 14:R31.
  • 8Islam S, Kjallquist U, Moliner A, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 2011; 21:1160–1167.
  • 9Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013; 20:1131–1139.
  • 10Dalerba P, Kalisky T, Sahoo D, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 2011; 29:1120–1127.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部