期刊文献+

Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning 被引量:2

原文传递
导出
摘要 The robust and automated determination of crystal symmetry is of utmost importance in material characterization and analysis.Recent studies have shown that deep learning(DL)methods can effectively reveal the correlations between X-ray or electron-beam diffraction patterns and crystal symmetry.Despite their promise,most of these studies have been limited to identifying relatively few classes into which a target material may be grouped.On the other hand,the DL-based identification of crystal symmetry suffers from a drastic drop in accuracy for problems involving classification into tens or hundreds of symmetry classes(e.g.,up to 230 space groups),severely limiting its practical usage.
出处 《npj Computational Materials》 SCIE EI CSCD 2020年第1期35-45,共11页 计算材料学(英文)
基金 This work was supported by the Samsung Research Funding and Incubation Center of Samsung Electronics under Project Number SRFC-MA1801-03.
  • 相关文献

参考文献3

二级参考文献4

共引文献24

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部