期刊文献+

Uncertainty quantification in molecular simulations with dropout neural network potentials 被引量:2

原文传递
导出
摘要 Machine learning interatomic potentials(IPs)can provide accuracy close to that of first-principles methods,such as density functional theory(DFT),at a fraction of the computational cost.This greatly extends the scope of accurate molecular simulations,providing opportunities for quantitative design of materials and devices on scales hitherto unreachable by DFT methods.However,machine learning IPs have a basic limitation in that they lack a physical model for the phenomena being predicted and therefore have unknown accuracy when extrapolating outside their training set.
出处 《npj Computational Materials》 SCIE EI CSCD 2020年第1期623-632,共10页 计算材料学(英文)
基金 This research was partly supported by the Army Research Office(W911NF-14-1-0247) under the MURI program,and the National Science Foundation(NSF)under Grant Nos.DMR-1834251 and DMR-1931304.
关键词 NEURAL METHODS DROPOUT
  • 相关文献

参考文献2

二级参考文献3

共引文献20

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部