期刊文献+

Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization 被引量:11

原文传递
导出
摘要 Designing a material with multiple desired properties is a great challenge,especially in a complex material system.Here,we propose a material design strategy to simultaneously optimize multiple targeted properties of multi-component Co-base superalloys via machine learning.The microstructural stability,γ′solvus temperature,γ′volume fraction,density,processing window,freezing range,and oxidation resistance were simultaneously optimized.
出处 《npj Computational Materials》 SCIE EI CSCD 2020年第1期1138-1146,共9页 计算材料学(英文)
基金 We gratefully acknowledge the financial support of National Key Research and Development Program of China(2016YFB0700505 and 2017YFB0702902) Guangdong Province Key Area R&D Program(2019B010940001) Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB(BK19BE030).
  • 相关文献

参考文献2

二级参考文献8

共引文献33

同被引文献102

引证文献11

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部