期刊文献+

Discovery of high-entropy ceramics via machine learning 被引量:15

原文传递
导出
摘要 Although high-entropy materials are attracting considerable interest due to a combination of useful properties and promising applications,predicting their formation remains a hindrance for rational discovery of new systems.Experimental approaches are based on physical intuition and/or expensive trial and error strategies.Most computational methods rely on the availability of sufficient experimental data and computational power.Machine learning(ML)applied to materials science can accelerate development and reduce costs.In this study,we propose an ML method,leveraging thermodynamic and compositional attributes of a given material for predicting the synthesizability(i.e.,entropy-forming ability)of disordered metal carbides.
出处 《npj Computational Materials》 SCIE EI CSCD 2020年第1期1323-1331,共9页 计算材料学(英文)
基金 We acknowledge support through the Office of Naval Research ONR-MURI(grant number N00014-15-1-2863) K.K.acknowledges support by the Department of Defense(DoD)through the National Defense Science and Engineering Graduate Fellowship(NDSEG)Program K.K.also acknowledges the financial support of the ARCS Foundation,San Diego Chapter K.S.V.acknowledges the financial generosity of the Oerlikon Group in support of his research group.
  • 相关文献

参考文献2

二级参考文献3

共引文献116

同被引文献103

引证文献15

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部