期刊文献+

Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics 被引量:2

原文传递
导出
摘要 Process optimization of photovoltaic devices is a time-intensive,trial-and-error endeavor,which lacks full transparency of the underlying physics and relies on user-imposed constraints that may or may not lead to a global optimum.Herein,we demonstrate that embedding physics domain knowledge into a Bayesian network enables an optimization approach for gallium arsenide(GaAs)solar cells that identifies the root cause(s)of underperformance with layer-by-layer resolution and reveals alternative optimal process windows beyond traditional black-box optimization.Our Bayesian network approach links a key GaAs process variable(growth temperature)to material descriptors(bulk and interface properties,e.g.,bulk lifetime,doping,and surface recombination)and device performance parameters(e.g.,cell efficiency).For this purpose,we combine a Bayesian inference framework with a neural network surrogate device-physics model that is 100×faster than numerical solvers.With the trained surrogate model and only a small number of experimental samples,our approach reduces significantly the time-consuming intervention and characterization required by the experimentalist.As a demonstration of our method,in only five metal organic chemical vapor depositions,we identify a superior growth temperature profile for the window,bulk,and back surface field layer of a GaAs solar cell,without any secondary measurements,and demonstrate a 6.5%relative AM1.5G efficiency improvement above traditional grid search methods.
出处 《npj Computational Materials》 SCIE EI CSCD 2020年第1期1592-1600,共9页 计算材料学(英文)
基金 This research is supported by the National Research Foundation,Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)program and its Energy Innovation Research program EIRP-13(Award No.NRF2015EWT-EIRP003-004)(supporting GaAs device fabrication) by the National Research Foundation(NRF)Singapore through the Singapore Massachusetts Institute of Technology(MIT)Alliance for Research and Technology’s Low Energy Electronic Systems research program(supporting AE and physics-constrained Bayesian inference algorithm development) by the US Department of Energy Photovoltaic Research and Development Program under Award DE-EE0007535(supporting Bayesian optimization algorithm development),and by a TOTAL SA research grant funded through MITei(supporting ML algorithm framing and application) Q.L.acknowledges funding from the Accelerated Materials Development for Manufacturing Program at A*STAR via the AME Programmatic Fund by the Agency for Science,Technology and Research under Grant No.A1898b0043.
  • 相关文献

参考文献1

二级参考文献2

共引文献14

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部