摘要
Energy-efficient electro-optic modulators are at the heart of short-reach optical interconnects,and silicon photonics is considered the leading technology for realizing such devices.However,the performance of all-silicon devices is limited by intrinsic material properties.In particular,the absence of linear electro-optic effects in silicon renders the integration of energy-efficient photonic–electronic interfaces challenging.Silicon–organic hybrid(SOH)integration can overcome these limitations by combining nanophotonic silicon waveguides with organic cladding materials,thereby offering the prospect of designing optical properties by molecular engineering.In this paper,we demonstrate an SOH Mach–Zehnder modulator with unprecedented efficiency:the 1-mm-long device consumes only 0.7 fJ bit^(-1) to generate a 12.5 Gbit s^(-1) data stream with a bit-error ratio below the threshold for hard-decision forward-error correction.This power consumption represents the lowest value demonstrated for a non-resonant Mach–Zehnder modulator in any material system.It is enabled by a novel class of organic electro-optic materials that are designed for high chromophore density and enhanced molecular orientation.The device features an electro-optic coefficient of r33<180 pm V^(-1) and can be operated at data rates of up to 40 Gbit s^(-1).
基金
This work was supported by the European Research Council(ERC Starting Grant‘EnTeraPIC’,number 280145)
by the Alfried Krupp von Bohlen und Halbach Foundation,and by the Initiative and Networking Fund of the Helmholtz Association
We further acknowledge support by the DFG Center for Functional Nanostructures
by the Karlsruhe International Research School on Teratronics,by the Karlsruhe School of Optics and Photonics
by the Karlsruhe Nano-Micro Facility,by the DFG Major Research Instrumentation Programme
by the EU-FP7 projects PHOXTROT and BigPIPES
by Deutsche Forschungsgemeinschaft
by the Open Access Publishing Fund of Karlsruhe Institute of Technology
Further financial support was obtained from the National Science Foundation(DMR-0905686,DMR-0120967)
the Air Force Office of Scientific Research(FA9550-09-1-0682)