期刊文献+

Phase recovery and holographic image reconstruction using deep learning in neural networks 被引量:17

原文传递
导出
摘要 Phase recovery from intensity-only measurements forms the heart of coherent imaging techniques and holography.In this study,we demonstrate that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training.This deep learning-based approach provides an entirely new framework to conduct holographic imaging by rapidly eliminating twin-image and self-interference-related spatial artifacts.This neural network-based method is fast to compute and reconstructs phase and amplitude images of the objects using only one hologram,requiring fewer measurements in addition to being computationally faster.We validated this method by reconstructing the phase and amplitude images of various samples,including blood and Pap smears and tissue sections.These results highlight that challenging problems in imaging science can be overcome through machine learning,providing new avenues to design powerful computational imaging systems.
出处 《Light(Science & Applications)》 SCIE EI CAS CSCD 2017年第1期192-200,共9页 光(科学与应用)(英文版)
  • 相关文献

同被引文献137

引证文献17

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部