期刊文献+

Design of task-specific optical systems using broadband diffractive neural networks 被引量:12

原文传递
导出
摘要 Deep learning has been transformative in many fields,motivating the emergence of various optical computing architectures.Diffractive optical network is a recently introduced optical computing framework that merges wave optics with deep-learning methods to design optical neural networks.Diffraction-based all-optical object recognition systems,designed through this framework and fabricated by 3D printing,have been reported to recognize handwritten digits and fashion products,demonstrating all-optical inference and generalization to sub-classes of data.These previous diffractive approaches employed monochromatic coherent light as the illumination source.Here,we report a broadband diffractive optical neural network design that simultaneously processes a continuum of wavelengths generated by a temporally incoherent broadband source to all-optically perform a specific task learned using deep learning.We experimentally validated the success of this broadband diffractive neural network architecture by designing,fabricating and testing seven different multi-layer,diffractive optical systems that transform the optical wavefront generated by a broadband THz pulse to realize(1)a series of tuneable,single-passband and dual-passband spectral filters and(2)spatially controlled wavelength de-multiplexing.Merging the native or engineered dispersion of various material systems with a deep-learning-based design strategy,broadband diffractive neural networks help us engineer the light–matter interaction in 3D,diverging from intuitive and analytical design methods to create taskspecific optical components that can all-optically perform deterministic tasks or statistical inference for optical machine learning.
出处 《Light(Science & Applications)》 SCIE EI CAS CSCD 2019年第1期124-137,共14页 光(科学与应用)(英文版)
基金 the support of Fujikura(Japan).
  • 相关文献

参考文献4

共引文献59

同被引文献34

引证文献12

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部