期刊文献+

基于约束的基因组规模代谢网络模型构建方法研究进展 被引量:4

Advances in the development of constraint-based genome-scale metabolic network models
原文传递
导出
摘要 基因组规模代谢网络模型(Genome-scale metabolic network model,GSMM)正成为细胞代谢特性研究的重要工具,经过多年发展相关理论方法取得了诸多进展。近年来,在基础GSMM模型基础上,通过整合基因组、转录组、蛋白组和热力学数据,实现基于各种约束的GSMM构建,在基因靶点识别、系统代谢工程、药物发现、人类疾病机理研究等多个方面取得了进一步的发展和理论突破。文中重点综述包括转录组约束、蛋白组约束、以及热力学约束条件在GSMM中的实施方法、相应方法的不足及应用限制等。最后介绍了如何综合运用转录、蛋白及热力学约束,实现GSMM的全整合模型及其细化,并对基于约束的GSMM构建及应用前景进行了展望。 Genome-scale metabolic network model(GSMM)is becoming an important tool for studying cellular metabolic characteristics,and remarkable advances in relevant theories and methods have been made.Recently,various constraint-based GSMMs that integrated genomic,transcriptomic,proteomic,and thermodynamic data have been developed.These developments,together with the theoretical breakthroughs,have greatly contributed to identification of target genes,systems metabolic engineering,drug discovery,understanding disease mechanism,and many others.This review summarizes how to incorporate transcriptomic,proteomic,and thermodynamic-constraints into GSMM,and illustrates the shortcomings and challenges of applying each of these methods.Finally,we illustrate how to develop and refine a fully integrated GSMM by incorporating transcriptomic,proteomic,and thermodynamic constraints,and discuss future perspectives of constraint-based GSMM.
作者 周静茹 刘鹏 夏建业 庄英萍 Jingru Zhou;Peng Liu;Jianye Xia;Yingping Zhuang(State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《生物工程学报》 CAS CSCD 北大核心 2021年第5期1526-1540,共15页 Chinese Journal of Biotechnology
基金 国家重点研究发展计划(No.2019YFA0904300) 国家自然科学基金(No.21776082)资助。
关键词 基因组规模代谢网络模型 多组学 热力学 数学建模 约束方法 genome-scale metabolic network model multi-omics thermodynamics mathematical modeling constrained methods
  • 相关文献

参考文献2

二级参考文献46

  • 1Leitner F, Valencia A. A text-mining perspective on the requirements for electronically annotated abstracts. FEBS Lett, 2008, 582: 1178-1181.
  • 2Thiele I, Palsson BO. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc, 2010, 5: 93-121.
  • 3Otero JM, Nielsen J. Industrial systems biology. Biotechnol Bioeng, 2009, 105: 439-460.
  • 4Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coil Nat Biotechnol, 2008, 26: 659-667,.
  • 5Park JH, Lee SY. Towards systems metabolic engineering of microorganisms for amino acid production. Curt Opin Biotechnol, 2008, 19: 454-460.
  • 6Patil KR, Akesson M, Nielsen J. Use of genome-scale microbial models for metabolic engineering. Curr Opin Biotechnol, 2004, 15: 64-69.
  • 7Feist AM, Palsson BO. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol, 2008, 26: 659-667.
  • 8Durot M, Bourguignon PY, Schachter V. Genome-scale models of bacterial metabolism: reconstruction and applications. FEMSMicrobiolRev, 2009, 33: 164-190.
  • 9Hanisch D, Zien A, Zimmer R, et al. Co-clustering of biological networks and gene expression data. Bioinformatics, 2002, 18(suppl 1 ): S 145-S 154.
  • 10Reed JL, Palsson BO. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res, 2004, 14: 1797-1805.

共引文献17

同被引文献217

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部