期刊文献+

基于改进AlexNet的双模态握笔手势识别 被引量:1

Bimodal pen-holding gesture recognition based on improved AlexNet
下载PDF
导出
摘要 本文提出了一种基于改进AlexNet的双模态握笔手势识别方法。该方法根据握笔手势特征自建了 8 100张握笔手势数据集,对数据集进行了手势分割获取二值图像、骨架提取获取包含原图的骨架图像等处理,并将处理后的2种类型图像构成双模态图像输入至改进的AlexNet中。针对AlexNet提取握笔手势特征不充分的问题,本文将AlexNet第一层的卷积核大小修改为3×3,并在卷积层之后添加了批量归一化、注意力机制。通过实验证明,该方法对9种握笔手势的平均识别率达到75.6%,分别高于骨架图像、分割图像、AlexNet网络11%、16%和13%,证明了该模型对握笔手势识别的有效性。 In this paper,a new method of pen-holding gesture recognition based on improved AlexNet is proposed.In this method,8100 pen-holding gesture data set is constructed according to the characteristics of pen-holding gesture.Then the data set is processed,including gesture segmentation obtains binary image,skeleton extraction obtains the skeleton image containing the original image,and the processed images are formed into bimodal images which are input into the improved AlexNet.In order to solve the problem that AlexNet is not sufficient in extracting the characteristics of pen-holding gesture,this paper modifies the convolution kernel size of AlexNet's first layer to 3×3,meanwhile adds batch normalization and attention mechanism after the convolution layer.The experimental results show that the average recognition rate of nine pen-holding gesture is 75.6%,which is 11%,16%and 13%higher than that of skeleton image,segmenting image and AlexNet network,respectively.It proves the effectiveness of the proposed model for pen-holding gesture recognition.
作者 张璐 陶然 彭志飞 丁金洋 ZHANG Lu;TAO Ran;PENG Zhifei;DING Jinyang(College of Computer Science and Technology,Donghua University,Shanghai 201600,China)
出处 《智能计算机与应用》 2021年第6期51-55,62,共6页 Intelligent Computer and Applications
关键词 手势分割 骨架提取 双模态输入 AlexNet 握笔手势识别 gesture segmentation skeleton extraction bimodal input alexNet pen-holding gesture recognition
  • 相关文献

参考文献7

二级参考文献30

  • 1殷涛,葛元,王林泉.基于几何矩的字母手势识别算法[J].计算机工程,2004,30(18):127-129. 被引量:11
  • 2徐战武,朱淼良.基于颜色的皮肤检测综述[J].中国图象图形学报,2007,12(3):377-388. 被引量:29
  • 3Licsar A,Sziranyi T.User-adaptive hand gesture recognition system with interactive training[J].Image and Vision Computing,2005,23(12):1102-1114.
  • 4Phung S,Bouzerdoum A,Chai D.Skin segmentation using color pixel classification:analysis and comparison[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):148-154.
  • 5Gamal M,Abdul K,Sallam E.Hand Gesture Recognition using Fourier Descriptors[C]//International Conference on Computer Engineering and Systems,Cairo,EGYPT,2013:274-279.
  • 6Dhruva N,Rupanagudi S,Sachin S,et al.Novel Segmentation Algorithm for Hand Gesture Recognition[C]//IEEE International Multi Conference on Automation Computing,Control,Communication and Compressed Sensing,Kottayam,INDIA,2013:383-388.
  • 7Pramod K,Prahlad V,Ai P.Attention Based Detection and Recognition of Hand Postures against Complex Backgrounds[J].International Journal of Computer Vision,2013,101(3):403-419.
  • 8Hsu R,Mottaleb A,Jain A.Face detection in color images[J].Pattern Analysis and Machine Intelligence,2002,24(5):696-706.
  • 9Liu Y,Zhang L,Zhang S.A Hand Gesture Recognition Method Based on Multi-Feature Fusion and Template Matching[C]//International Workshop on Information and Electronics Engineering,Harbin,PEOPLES R CHINA,2012:1678-1684.
  • 10P. Kakumanu,S. Makrogiannis,N. Bourbakis.A survey of skin-color modeling and detection methods[J]. Pattern Recognition . 2006 (3)

共引文献128

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部