期刊文献+

Tuneable red,green,and blue single-mode lasing in heterogeneously coupled organic spherical microcavities 被引量:4

原文传递
导出
摘要 Tuneable microlasers that span the full visible spectrum,particularly red,green,and blue(RGB)colors,are of crucial importance for various optical devices.However,RGB microlasers usually operate in multimode because the mode selection strategy cannot be applied to the entire visible spectrum simultaneously,which has severely restricted their applications in on-chip optical processing and communication.Here,an approach for the generation of tuneable multicolor single-mode lasers in heterogeneously coupled microresonators composed of distinct spherical microcavities is proposed.With each microcavity serving as both a whispering-gallery-mode(WGM)resonator and a modulator for the other microcavities,a single-mode laser has been achieved.The colors of the single-mode lasers can be freely designed by changing the optical gain in coupled cavities owing to the flexibility of the organic materials.Benefiting from the excellent compatibility,distinct color-emissive microspheres can be integrated to form a heterogeneously coupled system,where tuneable RGB single-mode lasing is realized owing to the capability for optical coupling between multiple resonators.Our findings provide a comprehensive understanding of the lasing modulation that might lead to innovation in structure designs for photonic integration.
出处 《Light(Science & Applications)》 SCIE EI CAS CSCD 2020年第1期584-592,共9页 光(科学与应用)(英文版)
基金 supported by the Ministry of Science and Technology of China(Grant No.2017YFA0204502) the National Natural Science Foundation of China(Grant Nos.21790364 and 21533013).
  • 相关文献

参考文献2

二级参考文献41

  • 1Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single- nanowire electrically driven lasers. Nature 2003, 421, 241-245.
  • 2Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chemyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Pen, J. J.; Liu, J. L. Electrically pumped waveguide lasing from ZnO nanowires.Nat. Nanotechnol. 2011, 6, 506-510.
  • 3Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E. R.; Russo, R.; Yang, P. D. Room- temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897-1899.
  • 4Yang, Z. Y.; Xu, J. Y.; Wang, P.; Zhuang, X. J.; Pan, A. L.; Tong, L. M. On-nanowire spatial band gap design for white light emission. Nano Lett. 2011, 11, 5085-5089.
  • 5Guo, P. F.; Zhuang, X. J.; Xu, J. Y.; Zhang, Q. L.; Hu, W.; Zhth X. L., Wang, X. X.; Wan, Q.; He, P. B.; Zhou, H. et al. Low-threshold nanowire laser based on composition- symmetric semiconductor nanowires. Nano Lett. 2013, 13, 1251-1256.
  • 6Pan, A. L.; Wang, S. Q.; Liu, R. B.; Li, C. R.; Zou, B. S. Thermal stability and lasing of CdS nanowires coated by amorphous silica. Small 2005, 1, 1058-1062.
  • 7Pan, A. L.; Liu, R. B.; Sun, M. H.; Ning, C. Z. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum. J. Am. Chem. Soc. 2009, 131, 9502-9503.
  • 8Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617-620.
  • 9Zhai, T. Y.; Liu, H. M.; Li, H. Q.; Fang, X. S.; Liao, M. Y.; Li, L.; Zhou, H. S.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V205 nanowires: From synthesis to field- emission, electrochemical, electrical transport, and photo- conductive properties. Adv. Mater. 2010, 22, 2547-2552.
  • 10Guo, P. F.; Hu, W.; Zhang, Q. L.; Zhuang, X. J.; Zhu, X. L.; Zhou, H.; Shan, Z. P.; Xu, J. Y.; Pan, A. L. Semiconductor alloy nanoribbon lateral heterostructures for high-performance photodetectors. Adv. Mater. 2014, 26, 2844-2849.

共引文献21

同被引文献46

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部